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ABSTRACT

Various methods have been proposed to estimate the parameters
of both open loop and closed loop sampled~-data control systems,
Generally speaking, these methods yielded approximate models of the
system under study; the degree of approximation depending on the
a priori knowledge of the system structure, state observation noise,
system nonlinearities, and other factors, However, none of the
methods has been applied to the problem of determining the sampling
interval of either closed loop or open loop sampled-data control
systems, This has been the task of the present study. Specifically,
this dissertation is concerned with estimation of parameters in
systems that have internal sampling, but have continuous input and
output, The continuous portion of the sampled-data system is given

by the differential equation

dz _ e =t
2 - f(z, p, ul®); z(t=0) =¢

where z is an n dimensional vector of state, f( «) is the n
dimensional vector of the dynamical system, p is a constant h
dimensional vector of parameters, uft) is an r dimensional vector of
piecewise continuous control functions, and { is the initial condition
vector, For our results, f( . ) was required to be of class C1 in z
and p. The differential equation is preceded by some form of data
hold., The model-matching technique was used for parameter estima-

tion. Methods were developed for determining not only the sampling

xii



interval, but all the other parameters and initial conditions of the

sampled-data system as well,

In this investigation, three methods were employed for the
estimation of sampling intervals and other parameters of a sampled-
data system. In all methods, the cost function was the integral of
norm-squared error, where the error function was defined as the
difference between the observed state vector of the system, and the

state vector of the model.

The first method employed programmed search to vary the model

parameters in order to minimize the cost function,

The second method employed iterative gradient search by means
of discrete sensitivity difference equations for the various model
parameters, The work of Bekey and Tomovic in connection with
discrete sensitivity difference equations for the sampling interval was
extended to all the other parameters of the system, Gradient search

was then used for parameter estimates.

The third, and most important, method used was that of
stochastic approximation. This permitted observation noise. The
mean-square convergence of the model parameters to the true para-
meters of the system was proved under the following conditions: The
system and model agreed in form and order, the data holds were
identical, the observation noise had zero mean, finite variance, and
was uncorrelated with both the system state vector and model state

vector, f( -} was of class cl in z and p, and the partial derivative

xiii



of the cost function with respect to the sampling interval existed and

was bounded.

Stochastic approximation was then applied to the practically
important problem of estimating the parameters of the human operator
from records of scalar input and scalar output of the human operator
operating in a closed loop configuration, Parameters were estimated
successfully in both continuous and sampled-data models of human

operators.



CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 General Statement Of The Problem

Various methods have been proposed to estimate the parameters
of both open loop and closed loop sampled-data control systems,
Generally, these methods yvield approximate mo‘dels of the system
under study; the degree of approximation depending on a priori
knowledge of the system structure, state observation noise, system
nonlinearities, and other factors. However, at the present time not
one of the current methods has been applied to the problem of
determining the sampling interval of either closed loop or open loop
sampled-data control systems, This is t_he task of the present study.
Specifically, we will be concerned with systems that have internal
sampling, but have continuous input and ocutput. Refer to Figure 1.1
for a schematic diagram of such a system. The continuous portion of

the sampled-data system is given by

& = iz, p, ul®), z{t=0) =t (1.1)

where z is a n dimensional vector of state, f is the n dimensional
vector of the dynamical system, p is a constant h dimensional vector
of parameters, and u(t) is an r dimensional vector of control, Note
that h < n. The solution to (1.1), written formally as z(t; p, &, u(t),
will often be denoted by z(t: p, {), z{t; p), or z(t) as required by

the particular treatment at the time. Thus, we will usually suppress

1
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notational dependence on initial conditions and/or parameters when
they are not to be varied during the course of an estimation procedure,
and will not always explicitly show the u(t) dependence for reasons

which will become clear later.

Proceeding informally for the present, we will assume that the
fi, afi/a 2?2, and Bfi/'f)pj (i,g=1, 2,...,n; j=1, 2,....,h) exist and
are continuous functions of t, z, p, and u.. Assuming, furthermore,
that the data hold is of a given type, such as, for example, zero-
order, we will treat the problem of estimating not only the sampling
interval T of the sampled-data system of Figure 1.1, but also the
components of the parameter veétor p of the continuous system as
well. The methods we develop can, in addition, be used to
estimate the components of the initial condition vector {. However,

modeling studies are .limited to the estimation of p and T,

While it is clear that this is an important topic in estimation
theory, it is of practical importance as well. For example, the
application of analytical and computer techniques to process control
is a challenging and important problem area in the modern control
field. Generally, in order to control the plant in the de_sired manner,
the parameters of the closed-loop system must be known, This study
enlarges the set of plant parameters which may be estimated to include
the sampling interval when the data hold is of constant characteristic

and the differential equation of the plant satisfies equation (1.1).

In addition to process control, the study of manual control

continues to be an important problem area in the synthesis of modern
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aerospace vehicles, Early flights in the manned space vehicle
program, including the Mercury and Gemini missions, have clearly
demonstréted the importance of the human controller in the closed-loop
control system configuration, and the consequent importance of
precise knowledge of his dynamic characteristics to control system
designers., As new space programs are formulated, it will become
increasingly important to develop satisfactory techniques for deter-
mining accurately the dynamic characteristics of human performance

in control tasks,

1.2 Some Definitions

At the outset we will adopt the following somewhat arbitrary
definitions. In particular, they are concerned with the problem of
determining the coefficients and/or states of a plant described by an

ordinary differential equation,

Definition 1: An identification is here defined as the determination

of the coefficients of the differential equation of the plant by means
of some types of model adjustment technique when the exact form
of the differential equation is known and when measurements of

the observed quantities are noise-free, Under these restrictions,

a plant is said to be identified when these coefficients are known

exactly.

Definition 2: An optimal estimate is here defined as the determina-

tion, in some optimal sense, of the coefficients of a plant by

means of model adjustment when the exact form of the differential
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equation of the plant is possibly unknown and when the observed

quantities are noise~corrupted,
1.3 Background

The research activity reported in this dissertation is concerned
with the problem of estimating sampling rates in sampled-data control
systems whose output state variables are continuous functions of
time. While the purpose is to develop a method which will ultimately
be useful in estimating Sampling intervals in a wide variety of
sampled~data control systems, the approach taken here is rather
general, being concerned with estimating a sampling-interval, as well

as other parameters, of a sampled-data system in general.

However, a literature search discloses that all previously -
recorded attempts at such estimation have been concerned with the
human operator. This is because of the relative importance of
obtaining accurate models of the operator dynamics for ﬁse in control
synthesis studies. Examples of these studies are found in connection

with aircraft and spacecraft design.

Intermittency in human tracking behavior has been used as a
basis for modeling of simple manual control systems in a number of
early studies. This is discussed in papers by Ward [1], Bekey [31,
Lemay and Naslin [4]. More recently, intermittent behavior has been
reported by Pew, Duffendack, and Fensch [51. In all these models,
systematic techniques for the determination of the sampling interval

have been lacking. The problem is further complicated by the fact



that the studies of McRuer et al [6] as‘well as recent experiments by
Jacobson, Biddle, and Bekey [7] have indicated that if sampling is
present in human operator behavior, it does not consist of a simple
periodic sampler, but rather a i‘anddm sampler in which a mean
sampling interval has superimposed upon it a random variability of
magnitude sufficient to obscure the resulting periodicities in operator

output spectra.

Recently, some progress has been made in the direction of
obtaining methods for the estimation of the parameters of sampled
models, including a gquantitative measure of both a constant or a
random sampling frequency. The work of Bekey and Tomovic [8] has
shown that dynamic system sensitivity analysis can be applied to
systems with variable sampling. They have furnished the mathematical
formulation of the system sensitivity to sampling interval variations,
and have shown*how adaptive sampling may be implemented in
adaptive control situations. More recently, Neal [9]1 has applied
these results to the determination of constant sampling frequencies
in linear noise~free closed-loop sampled-data control systems

described by Figure 1.1. This work will be discussed in Chapter 2.

1.3.1 Brief Review Of Some Parameter Estimation Techniques

The purpose of this section is to provide a brief review of
several parameter estimation techniques which are of current interest.
For detailed accounts of a wide variety of parameter estimation

techniques reference is made to the more detailed surveys of Nahi [66],



Eveleigh [81], Cuenod and Sage [82], and Eykhoff [83]. Unless

noted all vectors have the dimensions given in Section (1.1).

Kopp and Orford [13] describe a method for obtaining an itera-
tive estimate of both the parameters and the state of linear models of
possibly nonlinear time-varying systems described by ordinary

differential equations. Such nonlinear systems are represented by

42 - {z, p), u®), 0,  zl0) =t (1.2)

where the nomenclature is the same as that of equation (1.1).
Basically, their technique is an extension of the Kalman iterative
state estimation technique implemented, in this case, by adjoining a
set of assumed linear differential equations for the parameters to the
set of linear differential equations des;:ribing the linear model of the
system, The differential equations for the unknown parameters are

assumed to satisfy, for example, a model such as

i . . ~ . . ~,

e -t @ ' -p'w] +w ®: plo=pl (1.3)
where pi(t) represents the ith unknown parameter, o' (t) is a given
(assumed) time-varying coefficient, p(t) is the present estimate of
th

the temporal history of p'(t), and wr:(t) is the noise term of the i

parameter with assumed properties:

E(Wni(t)) =0, (i=1,2, ...,h), h=n,

025 ot - 7)), (1.4
n

E (w ()w ' (x))

1

where 6( » ) is the Dirac delta function, and ch% i is given. The
n
initial conditions, ¢ and Py for both the state differential
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equations (1.2) and the parameter differential equations (1.3) are
drawn from a set of normally distributed random variables. Sequential
linear regression is then used to obtain the estimates of the augmented
state vector. Because linear regression is employed, the parameter

estimates thus satisfy a minimum mean-square error criterion [661].

The quasilinearization method [14] has been applied to the
estimation of the components of the constant parameter vector p and

the initial condition vector { of equation (1.1)

2 =iz, p, ul®), 2z = (1.1)

where the form of f( + ) is assumed to be known, and it is assumed
that noise-free observations of some of the states of (l. 1) are

available, By assuming

L = o, p(0) = p, (1.5)
and adjoining (1.5) to (1.1) and regarding (1. }) as the forward loop
control system, and uf(t) as the sum-junction error signal, of a
unity feedback closed loop control system, the new problem [14]

becomes that of estimating the components of the augmented initial

condition vector z of the vector differential equation

~

= £(z), Z(0) = z (1.6)

3

where the z(t) is an (n+h) dimensional vector, Observations bl(t) ofonly
the first component of the original state vector ~(zl=2‘1) are required and
the quasilinearization technique is then used to generate the (k+1) st

sequential estimate time history of the augmented state vector,



written as Z(k+1) (t), so as to minimize

N
s = E(E"(lkﬂ)(ti) - bl(ti))z. (1.7)

i=1
In order to start the procedure an initial estimate of Z(t) is assumed.
The details of the quasilinearization technique are discussed in the
work of Bellman, Kagiwada, and Kalaba [14]. The quasilinearization
approach to parameter estimation has the weakness that convergence,
in general, will occur only if the initial estimates of the components

of Z(t) are sufficiently close to their respective true values.

Detchmendy and Sridhar [84] applied invariant imbedding to the
estimation of noisy states and parameters in time-varying nonlinear
dynamic systems. The form of the dynamic system is assumed to be

known exactly and may be written, for example, as

L = 1z +kEzH0u0, 20 =t, (1.8)

where u(t) represents an r vector of unknown forcing functions. Also,
equation (1.8) is here assumed to bé already in augmented form, and
hence contains the assumed differential equations for the parameter
variations. Observations of the states z are expressed by the m
vector

v(t) = h(z,t) +nlt) (1.9)

where n(t) is the observation error m vector. No statistical

assumptions are made concerning the unknown input vector u(t) or the



10

observation error vector nt). The cost function

t
f
[iv() - (2,002 + 02 - (2,003 Jar (1.10)

0
]

tf
[ fiv() - h(%,t)ué + nﬁ(t)nzk/Wk]dt

is to be minimized with respect to z(t) and uft) for 0<t < te subject

to the constraint differential equation
92 - gz,0 + k(Z2,080), 20) = ¢ (1.11)

dt ' '

where Z(t) and U(t) are the estimates of the state vector and

unknown forcing function vector respectively, and Q and W are
positive definite weighting matrices. The Hamiltonian for the
system of (1.10) and (1.11) is then written and the maximum principle
is used to obtain a two-point boundary value problem for which some
of the boundary conditions are specified at t=0 and some are specified
at t = tf. Then, by using the invariant imbedding equations, a
sequential es?imator for the noisy states and noisy parameters is
obtained. The derivation of the invariant imbedding equations is
given in References [84]1 and [85]. The invariant imbedding

approach to parameter estimation has the advantage that noisy
parameters can be treated and, if the system is stable and observable,
then convergence of the estimator equations to their minimizing
"(least-squares) values will occur over a wide range of initial

conditions [85].
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Stochastic approximation, which will be discussed at length in
Chapter 3, has been suggested or used by Bertram [17],
Sakrison [18,191, Ho and Whelan [20], Kushner [21,22], Ho and
Lee [23]3, Kirvaitis [24], Holmes [251, and others for parameter
estimates in both open loop and closed loop linear and nonlinear
continuous control systems, However, up to the present time, no
application of this technique has been made to determining sampling
intervals. In this dissertation, we will apply stochastic approximation
to the problem of estimating sémpling intervals anci other parameters

of closed loop sampled-data systems.

1.4 Objectives Of The Study

From the foregoing discussion it is clear that many techniques
have been successfully applied to the task of estimating the parameters
of controlled systems. Some of these can also be used to estimate the
parameters of closed loop control systems. Until the present study
it has not been shown that any of the previous methods could be used
to identify either deterministic or random sampling intervals in closed .
loop sampled-data control systems. Therefore the objectives of this

study are as follows:

Given the sampled~data control system of Figure 1.1, with the
properties given in Section 1.1, it is desired to develop an estimation
technique which will ultimately lend itself to the estimation of all the
parameters of the sampled-data system, including the sampling
interval, In order to accomplish this objective, consider the model-

matching least-square parameter estimation configuration of either
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Figure 1.2, or Figure 1.3, consisting of a closed loop sampled-data
system, which, in practice, might have unknown parameters, and a
model of that system which will be designated as the sampled-data
model. Both sampled-data system and sampled-data model are
driven by the scalar function r{t). The sampled-data system and
sampled-~data model consist of a closed loop configuration of sampler,
data~hold, and continuous system. In the sampled-data system, the
sampling is assumed to be periodic with period T, and the data-hold
is assumed to be of zero order. Similarly, the sampled-data model
has periodic sampling, of period % ,» and has a zero-order data hold,
The continuous system is, in general, not perfectly known, and our
broad objective is to develop ways for estimating its parameters as
well as the sampling interval T, For purposes of later analysis, we
will require that the continuous model satisfy the continuity and
differentiability requirements listed in Section 1.1. The continuous

model is given by

(oN

2 - ¥ 5, 0w, 3 (t=0) = L, (1.12)

)9;'

-~

where Z and f are n dimensional vectors, P is an h dimensional
vector of parameters, and {i(t) is a piecewise continuous scalar
control variable., Note that h < n. In general, superscripts will
refer to components of vectors, e.qg., 21 is defined as the output
component of the vector 2, The purpose of the modeling procedure is
to construct a continuous model which is of the same form as the
continuous system. Therefore, because of the above analytical

requirements imposed on the continuous model, we will also impose
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the same continuity and differentiability requirements on the
continuous system. The continuous system is hence assumed to be

of the form

E =z, p, u®) ; 2(t=0) = ¢ (1.13)

where z and f are n dimensional vectors, and the vector of constant
parameters p is h dimensional. Define the sampled-data system

(h + 1 + n) dimensional parameter vector by
» '
x = (p, T, ), (1.14)

where “ indicates transpose, arid define the sampled-data model

(h+1+n) dimensional parameter vector by
- N e, " y
= (5 T,0). (1.15)

Note that (h+14n) < 2n + 1. Henceforth, we will describe (1.,14)

and (1.15) as m dimensional vectors, where m < 2n + 1, The

model-matching configuration of either Figure 1.2, or Figure 1,3

will be driven by r(t), a scalar function, which is required to be
non-zero over the constant iteration interval r, At the end of a
particular iteration, the components of the parameter vector X

will be adjusted to new values according to the particular algorithm
used in the study, then the integration will begin over again. Define

the vector error function by

e(t; x, %, r(t)) = v(t; x, r(t)) - 2@t; R, r(t), (1.16)
where

vit; x, r(t)) = z(t; x, rt)) + nl(t)-, (1.17)
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L)

and where z(t; x, r(t)) and Z(t; %, r(t)) "are the state vectors of the
sampled-data system and the sampled-data model respectively, and

nl(t) is the state observation noise vector. Define the cost function

)
J(rix, R, r(0) = [/t %, R, 0) Welt: x, R, r(0) dt  (1.18)

(o]
where W is a positive definite weighting matrix and T is the constant
iteration interval, (In the sequel, we will often indicate (1.18) by
either J(+; %, r{t)), or J{r; %), since x is a constant parameter vector,
whereas % may be adjusted after each iteration. Likewise, equation

(1.16) will be indicated by €(t; %).

(I) Using the estimation configuration of Figure 1.2:

(@) Determine conditions under which equation (1.18) has
a unigue minimum over % when the continuous system
and the continuous model have the same form and when

(. 0) = 6,1, (1.19)

(b) Suppose the continuous system is not modeled corrently
so that either the continuous model and continuous system
do not agree in form, or if they do agree in form, then the
parameter vectors (p, é)’ # (0, Z )/ . Determine whether
the cost equation (1.18) then has' a minimum over 'IT

(c) Investigate conditions for convergence of the estimate 'f
to the true value of T when a steep descent approach

using the sensitivity difference equations is employed in

conjunction with an iterative adjustment scheme. As in (a)
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assume that sampled-data system and sampled-data model

are identical except for the sampling intervals,

(II) Using the estimation configuration of Figure 1.3:

(d) Study the application of stochastic approximation to the
problem of estimating the sampling interval T as well as
other parameters of the sampled-data system; i.e., obtain
estimates X of the complete sampled-data system
parameter vector x. Assume that the noise nl(t) corrupts
the observations of the system state vector z(t).

(e) Study the effect on parameter estimation caused by intro-
ducing a random noise component into each of the

parameters of the sampled-data system,

(III) Using data obtained from human operator experiments (Figure 1.4):
() Determine whether the human operator has a sampled-data
property by employing stochastic approximation to obtain
parameter estimates after construct\ing models to be used
in the configuration of Figure 1.3.
(g) By using stochastic approximation, attempt to improve the
best estimates of human operator models currently available

in the literature.

1.5 Organization Of The Dissertation

This dissertation is organized into five chapters and several
appendices. Chapter 1 gives the general problem statement, back-

ground material relevant to the study, objectives of the study, and
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restrictions placed on the study. This chapter corcludes with
comments on the importance and applicability of the research and its
influence on the current state of parameter estimation and human

operator modeling.

Chapter 2 is concerned' with estimating the sampling interval in
noise~free systems, Starting with some additional definitions, a
mathematical basis is developed for conditions under which identifi-
cation of sampling intervals is pos sible in noise-free sampled~-data
systems. Simulation results are presented for both identification and
estimation of sampling intervals. Two methods are used:
Programmed search over a variable set of parameters, and iterative
steep descent using the sensitivity difference equations of the

sampling interval and other parameters,.

Chapter 3 introduces the method of stochastic approximation for
estimating parameters and presents a convergence theorem for the
estimation problem indicated in Figure 1.3 together with the

stochastic approximation algorithm to be used in subsequent studies.

Chapter 4 is concerned with the results of a variety of
simulations involving para;meter estimation by means of stochastic
approximation. The system complexity ranges from noise-free linear
systems to both noisy linear and nonlinear systems. In the noisy
systems, all of the parameters, including the sampling interval,

have random components, In addition, a discussion is given of the

influence of the character of the input signal and observation noise
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on biasing the parameter estimates when either of these signals has

nonzero mean value.

Chapter 5 presents the resulis of applying the stochastic
approximation algorithm to the special problem of estimating human
operator model parameters from actual human operator experimental
data. The data were taken from compensatory tracking studies and

were generated according to the arrangement of Figure 1.4,

1.6 Limitations Of The Study

A number of limitations apply to the broad objectives stated
above. These restrictions fall into three categories: (1) Restrictions
imposed by the estimation algorithm, (2) Restrictions imposed by
the form of the model. (3) Restrictions imposed by the type of

experiment performed to furnish the operator data.

1.6.1 Restrictions Imposed By The Estimation Algorithm

In this study three algorithms are employed for parameter
estimation in sampled-data systems:

(a) Programmed search for the set of parameters which
minimize the cost function equation (1.18). Reference
Figure 1,2,

(b) Parameter sensitivity difference equations together with
steep descent to minimize equation (1.18). Reference
Figure 1.2.

(c) Stochastic approximation using equation (1.18) as the

basis of the algorithm, Reference Figure 1.3,
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While the first technique could conceivably be used in the
actual case of noisy observations of the sampled-data system output;
i.e., according to Figure 1.3, no convergence theorem for the

parameter estimates has been developed for this application.

The second technique has been used for systems with noisy
observations, however, no convergence theorem is available for
this application either, Furthermore, the mathematical complexity
associated with obtaining the difference equations for high order

models is time~consuming and error-fraught.

The third technique, stochastic approximation is a method for
estimating the parameters of systems under theoretical restrictions
which, in practice, are often realizable. In general, the cost
function must be convex, and must have a unique minimum, Also,
the observation noise must have zero mean value and must be
uncorrelated with either the outputs of the sampled-data system
or the sampled-data model, If the cost function has local minima,
then a preliminary search can be employed to identify them [301].
After that step, stochastic approximation can be used to improve
the parameter estimates by using a suitable Vinitial parameter
estimate vector, Stochastic approximation has the advantage over
the previously mentioned techniques that a convergence theorem for
the parameter estimates is available, This theorem, to be proved in
Chapter 3, shows that under the above restrictions on noise,

assuming the unique minimum, and with the restrictions on system
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apd model given in Section 1.4, that r{gg) E(SZn --x)2 = (0, where E( . )
is the expectation operator, In addition, for sampled-data systems,
simulation results indicate that the driving signal, r(t) of Figure 1.3
should also have zero mean va'lue. " Simulation results corroborate

analysis and indicate that if the mean value of the observation noise

is not zero, then a bias in the parameter estimates will occur.

Other parameter estimation schemes were not tried because of
the success enjoyed with stochastic approximation, and because of

its suitability to the real-world modeling and parameter estimation

problem,

1.6.2 Restrictions Imposed By The Form Of The Model

In connection with programmed search, it will be shown in
Chapter 2 that the set of model parameters which minimize the cost
function is not unique, but depends on the model chosen, Hence
biased parameter estimates, may occur if the continuous system
and continuous model do not agree in form and initial conditions and
unless the properties of the data hold of the model agree with those
of the sampled-data system, However, sensitivity of parameter
estimates to model structure was not analyzed in general, although

some numerical examples are given,

Likewise, in connection with the application of stochastic
approximation (S.A.) it is clear that biased parameter estimates may
occur if the form of the sampled-data model and initial conditions

do not agree with the form of the sampled-data system and initial
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conditions. Furthermore, in the practical case where oneistrying to
estimate the parameters of an unknown sampled-data system from
input - output data, neither the form, nor the initial conditions, of the
differential equation of the continuous system, nor the properties of the
data hold may be known. Under these circumstances, one concludes
that biased estimates of parameters of the sampled-data system will
be the rule, However, this is not a weakness of the stochastic
approximation method; rather, it is due to uncertainty in the modeling.
In an effort to overcome this restriction, the technique employed when
using stochastic approximation to estimate the parameters of an
unknown sampled~data system, was to first choose a closed-loop
model, adjust the model parameters by S.A, and record the minimum
cost function along with the minimizing parameter vector of the model.
Other models were then tried and S,A., was used to adjust the
parameters of each model. This procedure of modeling and subsequent
parameter estimation was continued until the point of diminishing
returns was reached, Examples of this procedure, used in connection
with modeling input-output data from human operator experiments,

are given in Chapter 5.

1.6.3 Restrictions Imposed By The Human Operator Tracking

Experiment

For an actual application of the stochastic approximation method
it was decided to use data from an experiment where a human
operator controlled dynamic elements in a closed loop tracking

situation as shown in Figure 1.4. The modeling technique outlined



24

above was employed with considerable success. This is evidenced by
the fact that by using stochastic approximation to adjust the
parameters of a simple model of the human operator that a decrease
in the cost function was obtained as compared to the best previous
estimate published in the literature. Further decreases were realized
when more complicated models were used. Despite this success, we
must point out the limitations in estimates of the parameters of the
human operator induced by the human operator tracking experiment.
These are as follows:
(a) The operator performed a specific tracking task. The
test results, and the parameter estimates derived from
them, might have been different had the operator been
performing a number of tracking tasks in some repetitive
sequence,
(b) Because of the limited amount of test data used in the
modeling and parameter estimation, no account is given

of the operator's pos sibly tiine-varying behavior,

1.7 Applications Of This Dissertation

Stochastic approximation is a very general technique for
estimating the parameters of sampled-data, as well as continuous
control systems. While it is applied in this dissertation to the
problem of estimating the sampling interval and other parameters oi
the human operator, it can jusi: as well be applied to problems of
parameter estimation in all sorts of continuous and sampled-data

processes.
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Also, the relatively large improvement (decrease in cost
function) accomplished in this study by using stochastic approximation
to adjust the parameters of one of the best current models of the
human operator suggest the possible improvement to be realized in
subsequent applications of this technique to the whole gamut of

human operator modeling problems including multi-axis control,
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CHAPTER 2
ESTIMATION OF SAMPLING INTERVALS AND OTHER PARAMETERS
IN NOISE-FREE SAMPLED-DATA SYSTEMS

2.1 Introduction

This chapter presents the results of the initial phase of the
investigation into ways for estimating the parameters of a closed-loop

sampled-data system,

The configuration of Figure 2.1 is used and represents the
estimation problem discussed in Chapter 1. In this chapter, the
parameter estimates are obtained by either programmed search over
the variable parameters of the model, or by iterative steep descent
based on using the sensitivity difference equations of the variable
parameters of the model, WJ:.th either method, the purpose is to
obtain the parameter vectdr % of the sampled-data model which

minimizes the cost function

T

I(r:x, %, r{t)) = ﬁzl(t; x, r®) - 2L %, r@)? at 2.1)

O

where the notation is that given in Chapter, and where z1 and ’21

are the (scalar) outputs of system and model respectively. We will
here define the minimizing vector X as the optimal estimate of the

parameter vector x of the sampled-data system.



27

SAMPLED-~DATA SYSTEM

ZERO 1
u(t, z
| orper |2 %f— = f{z, p» u(t) )
- T DATA z, = [
HOLD o
CONTINUOUS SYSTEM
. p
Parameter Vector: = g
r(t) +¥ . €
SAMPLED-DATA MODEL -
ZERO ~L e
-~ dz -~ ~ ~
_|ORDER |u(t) | 55 = @ B, wt)) ch
_ A DATA - _ 3
T lsowp 4
CONTINUOUS MODEL
Parameter Vector: xn = g
MODEL PARAMETERS
ADJUSTMENT BY EITHER T 3
PROGRAMMED SEARCH OR J(T) = J‘(e(.t:?: )Y at
STEEP DESCENT o -
T™>>T,T
) n
REPETITIVE INTEGRATION MODE
T SECONDS
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2.2 Problems For Investigation

The problems attacked in this chapter are those which have been
outlined in Section 1.4a, b, ¢. We assume that the estimator

configuration of Figure 2.1 is used and that the continuous system

dz

a = =z, p, ult), z(t=0) = ¢ (2.2)
and continuous model
E = 1z, 5. AW, 2t=0) = ¢ (2.3)

both have the continuity and differentiability properties described in
Section 1.1. Further, we assume that the data holds of sampled-data
system and sampled~data model (see Figure 2.1) are of zero order,
and assume that all parameters p of the éontinuous system (1,1)

are constant and that the sampling interval T of the sampled-data
system is also constant. We assume that r(t) is a suitable nonzero
function and that the phase of the sampling of the model is adjustable
so that the sampling of model and system can be made synchronous

when T =T.

In this section we seek to analyze the following problems:

(1) Assuming that the continuous system and continuous model
have identical differential equations and that
(9, Z) 7= (p, {)7, then determine conditions under which
the cost function (2.1) will have a unique minimum over

the estimate T of the sampling interval T as T ranges

over (0= T < ).
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(2) Assuming that the system is either not modeled correctly,
so that for all choices of § and Z and for all nonzero r(t)
the functions ;( ) and f( . ) are not the same, or, if it
is modeled correctly, then (B, 5)/ # (p, t)”, then
determine whether the cost function (2.1) will have a
minimum over % for (0 =< %< o) .

(3) Assuming that the form of the continuous model agrees
with that of the continuous system, so that if (t) = u(t)

and D =p then
f(z, p, at)) = i(z, p, ult) (2.4

and further assuming that (§,%)” = (p, £)~, then represent
the resulting minimum value of (2.1) over T by
J, = min J(v; x, %, (1)) (2.5)
T
Assuming next that (5, &) 7 # (p, t) 7, then represent the
resulting minimum value of (2,1) over T by
]‘2 = min J(r; %, %, r(t)) (2.6)
T

Develop an analytical relationship between Il and IZ .

2.3 Reference Mathematical Basis

The solutions to the above problems will be obtained after we
first establish a reference mathematical basis for the identification of
the unknown sampling interval T by means of programmed search

and the estimation configuration of Figure 2.1, We will first need
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some additional definitions to those alfeady given in Chapter 1. We

assume the estimation configuration of Figure 2.1,

2.3.1 Additional Definitions

-~

Definition 3: We say that we have an gptimal estimate T of an

unknown sampling interval T when the minimization of the cost
function (2.1) has been carried out over some restricted set of
candidate models and parameter vectors denoted by

{;(%, D, u(t); ?{}r An example of a restricted set of models is
the set of second \cl)rder sy stems with variable coefficients,

variable initial conditions, and variable transport lag together

with specified sets of these parameters.

-~

Definition 4: We say that we have an optimum estimate T of an

unknown sampling interval T when the minimization of the cost
function (2.1) has been carried out for all possible choices of
candidate models, parameter vectors and initial conditions.
(Note: From definition 1, Chapter 1, it is clear that the above

optimum estimate for the noise~free case considered in this

chapter is the same as the identification of Chapter 1.)

2.3.2 The Differential Equation Of The Continuous System

For our results in sampling interval identification, we will
require a unique solution of (2.1) for specified parameter vector p,
initial condition vector {, and control vector function u(t). In
addition, for the treatment of the deterministic gradient method in

this chapter, as well as the treatment by stochastic approximation
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in Chapter 3, we will require that the partial derivatives of the
solution of (2.1), with respect to parameters and initial conditions,
exist and be continuous. The following theorem is essentially

stated in [32]. The extension to include controls is stated in [33].

Theorem 2.1 [32, 33, 801: Let Zn, and Ph be open sets in the

Euclidian spaces E" and Eh respectively, Let (Tl’ Tz) be an open
t interval. Let u(t) be a piecewise continuous function from
(Tl, Tz) into E', Forany t in (TI'TZ) , define the vector of values

of u(t) by u ; ueE’. Consider the

2 = @, z, p, ult); 2(t=0) = ¢ . (2.7)

where z and f are n vectors, p is a constant parameter vector
belonging to Ph, and { is a constant initial condition vector belong-

ing to Z". Suppose the functions fl, afl/azg, and afl/apJ are

continuous from (Tl,Tz) x 2™ x Ph' x EF into El (i, 9=1,2, eee, n),

(j=p, 2,..,h). Let Py belong to Ph and t, belong to (Tl’ TZ)'

0
Let uo(t) be a chosen piecewise continuous function taking its
vector of values U, in E'. Choose a fixed P =Dg- Let ¥ be the
solution of (2.7) on a t interval (tls t < tz) belonging to (Tl’ Tz) .
Then there exists a 6> 0 such that for any (v,¢ , p, u) belonging

to a domain Ql, where

lel tl\ T< tz, W(r) ¢l + lip - poll + Hu(r) - uQ(T)||_<6 '

(2.8)
there exists a unique solution ¢ of (2.7) on tls tst,, where

(tl, tz) is a subset of (Tl, TZ)’ satisfying ¢(0; p, uft), &) =¢.
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Moreover, ¢ is of class C1 on Qz‘; i.e,, the partial derivatives
ad;‘/azg, a¢1/at, and 8<1>1/8p] are continuous functions on the

(n+h+r+ 2) dimensional domain Qz, where
QZ: (t1< t< tz) ~ and (r, &, p, uw belong to Ql'

Remark 1: The theorem simply states that if a solution exists, then
it is unique and has the properties described.

Remark 2: The continuous model ;( . ) is assumed to be identical
in form to the continuous system f( . ), hence the same theorem
applied to it also.

Remark 3: The existence and continuity of the partial derivatives
64,>i/8t (of the solution) will be required later. in this chapter when
we treat dynamic sensitivity difference equations and employ the
gradient search technique to obtain parameter estimates.

Remark 4: The existence and continuity of the partial §¢i/azg
implies the existence and continuity of the partials 8¢i/8?;g with
respect to initial conditions [80]. The exist;snce and continuity
of the latter as well as the existence and continuity of the partials
o¢ i/B_pj will be required when treating the estimation of the
sampling interval and other parameters of the sampled-data system
by means of the sensitivity difference equations and gradient
technique later in this chapter, The same comments apply to the
treatment of the estimation problem by stochastic approximation;
this will be considered in Chapter 3.

Remark 5; When (2.7) is a linear system, the above results are global;

i.e., they hold for all p, ¢, and choice of piecewise continuous
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control function u(t) [33]3.
Remark 6: The proof (Reference [33]) requires that the components of

h and Ef respectively, -

z, p, and u(t) lie in closed balls in zt, p
Closed balls are compact and convex [671, hence p must belong to

a compact convex set,

The above theorem will now be applied to the problem of

identifying an unknown sampling period.

2.3.3 Theorems For The Identification Of A Sampling Period When

Using Noise-Free Model-Matching

Consider the sampled-data system and sampled-data model in
the model~matching configuration of Figure 2.1 where each consists
of a periodic sampler, data~-hold, and continuous dynamic system
in a closed loop configuration with negative feedback from the
scalar output variable, When the sampling interval T is the only

unknown, we have the following theorems:

Theorem 2.2 Assume the model-matching configuration of sampled-
data system and sampled-data model described by Figure 2.1.
Assume that the continuous system and continuous model are of
identical form, with equal parameter vectors, exclusive of the
sampling intervals T and 'f, and with'equal initial condition vectors,

Assume that the sampling pulse train of the sampled ~data model is

given by

plt; T) = ié(t - kT = ¥T) (2.9)

k2=0
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where [-1/2 <5 < 1/2] and &( - ) is the Dirac delta function, and
k2 is an integer 0, 1, 2, .., so that it is possible to make the
sampling instants of sampled-data system and sampled-data model
synchronous when E‘ =T by adjusting the phase by :l:M%. Assume
that r(t) is a non-zero piecewise continuous function, and assume
that f( - ) and g( . ) are as described in Theorem 2.1, Let T,
and T>>"]T’. Thennecessary and sufficient to identify the unknown
sampling interval T is that (2.1) is zero for 7>0; i.e.,

T

I(r; %, %, r() = ﬁzl(t; x, () - 2Lt &, r@))%dt=0 (2.10)
0

and T is given by the T for which (2.10) is true.1

Proof (Sufficiency): Suppose "i' =T and for [-1/2 =Y =<1/2]
that the impulse trains are synchronous, yet J(+; x, x, r(t)) #0.
From the hypothesis, the solutions of the differential equations of
the continuous system and continuous model, (2.2) and (2.3)
respectively, are deterministic and identical when started from
identical initial conditions and when the sy stem and model are
noise free. Consider the sampling intervals following the initial
output from the hold devices, These may be visualized by reference
to Figure 2.2. (The data holds have been taken as zero-order.)
The initial sampling impulses are coincident., From the

1Since T and '.f. are the only parameters of interest here, we will

here designate z(t; x, r(t)) by z(t; T). Similarly, for Z(t; %, r(t))
we will use 2(t; T).
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uniqueness theorem, the outputs z(t; T) and Z(t; T) must be identical
for identical initial conditions and parameters since they are the
solutions of identical differential equations; i.e., the solutions of

(2.2) and (2.3) are

t
z(t; T) = /f(z. P, U (le))dv + ¢ (2.11)
0
and t
2(t; §) = ﬁ(i. P, ﬁ(l".z'l‘:))clrr+ g (2.12)
0

respectively, where k, and k, are integers belonging to the
1

2
sequence (0, 1, 2, ....). Now recall the feedback relationships
uk 1) = rlk,T) - zl(le; T) (2.13)
~and

~ A

a(sz) = r(kZE) -2lk,T; 1) (2.14)

Since k1 = kz, and T =T, then zl(le; T) = 21(k2T; T) again from

the uniqueness of the solutions. (This is clear if we consider that

both systems are started together at k,T =0 = kZT.) Also,

1
r(le) = r(sz); hence

uk,T = Alk,T), (2.15)
Thus,
-~ -t -~ ~
Nz(t; T) - 2(t; T < ‘élf(z,p,u(le)) - f(i,ﬁ,ﬁ(sz))lld¢=0.
(2.16)

as a consequence of the uniqueness theorem, But !- 1l cannot be <0,
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hence

lz(t; T) - £(t; D2 = o (2.17)
which implies that each component of the vector z(le; T) - i(sz; T)
is zero. Therefore, from (2.1)

T

J(m; x, %, r{t)) = ﬁzl(t; T) - El(t; T))zdt =0 (2.18)
-0
and this contradicts the assumption that J(r; %, %, r(t)) # 0 for all

te[0, 7], andfor * >0 and both T and T <,

Necessity: Suppose, from (2.1), that (2.13) holds, but T #T.
Then, from (2.13),

1) -3t T =0 (a.e.) (2.19)

for te[O,T] where 7> T, "I" But zl(t;' T) and 'Zl(t; "f) are
respectively the first components of the solution vectors of (2.2)
and (2.3) for identical initial conditions and parameters, but with
possibly different control signals u(k1 T) and u(kz%). Note:

'I"\;é T implies ﬁ(sz) does not always equal u(le) . From the
hypothesis on r(t) we know that zl(t; T) and zl(t; T) cannot be
zero on the entire interval [0,7]. From the uniqueness theorem and
the hypothesis on the adjustability of the phase of the impulse train
of the model with reference to the impulse train of the system
sampler, (2.9), this means a contradiction: That is, assuming
identical initial conditions, then the hypothesis of (2.18) can be

rewritten as
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T T

o ' > ”~ ) LY - 1
Jrix, %,r(t) = [[(f(f(z,p,u(le)) - f(z,p,u(sz)))dt) }zdt=0
. 0
(2.20)
1
where ( . )  here indicates the first component {output) of the

difference of the solution vectors. Then (2.20) implies that the

integrand is zero

AT

iz, o, uteym) - 52, B 2k DNt = 0 (2.21)

But since each differential equation (2.2) and (2.3), has a unique
solution for a particular u(t), (2.21) implies that u(le) = ﬁ(sz)
and therefore that le = kZT' and hence that T =T, since we

start with kl = k2 and the same initial data and parameters,

Theorem 2.3: Assuming the hypothesis of Theorem 2.2, then (2.1)

I x, %, r(t)) #0 (2.22)
ona T interval; i.e., J( 7 %, %, r(t)) is zero for one value of T only.

Proof: This follows directly from the uniqueness of the solutions of
(2.2) and (2.3). First, the initial conditions and the parameters of
the sampled-data system and the sampled-data model are the same
except possibly "f #T, Startat t=0 = le = kZE‘. The solutions

can be identical only if "I: =T, and for no other value of ’E‘ Hence,

there is no neighborhood of T for which J(+;x, %, r(t)) can be zero

for the above construction.
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Conjecture: When (2.2) and (2.3) are each linear systems, and the
parameter vectors and initial condition vectors are respectively
equal, then J(+; %, %, r(t)) is convex in T. A number of demonstra-

tions of this conjecture are given in the sequel.
2.4 Simulation Results for Programmed Search

Experimental digital studies were made to record the cost
function J(+; x, ¥, r(t)) as a function of the various parameters of
the continuous model for the case of close model matching and also
for the case of poor model matching. Transfer functions used are

given in Table 2.1.

Table 2.1: Transfer Functions Of Continuous System And

Continuous Model.

Programmed Search For Optimal Estimate Of T,
System Model Figure
4 Number
1.0 K 2.3
s s 2.4
(s +.2) K (s+2) 2.5
s(s + 1) s(s + 1) 2.6
-0.1s >
e (s +2) K (s+ 2 2.7
s(s + 1) (s + 1)
-0.1s ~-0.1s
e (s +2) Ke (s +2) 2.8
s(s + 1) s(s +1)
(s +2) K 2.9
s(s + 1) s
Note: All initial conditions are zero.
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Model parameters which were varied included sampling interval T,
gain, and transport lag. The simulations used impulse sampling and
zero—order data holds. The sampling interval was held constant
over each iteration interval (v). The sampling instants were
synchronous when ’I\‘ =T in all cases, It was found that non-

synchronous sampling, when T = T, had very little effect on the

graphical results, and therefore these results are not reported here.,

Figures 2,3 and 2.5 verify the Identification Theorems. These
figures also‘show that when the system and model agree in form but
differ by gain,ﬂ then the cost curve is minimized at some E‘ other
than % =T, This is also the case when the form of the model does
not match the system, as in the case for Figures 2,7 and 2.9.

Note, in Pigure 2.7, that the presence of a transport lag in the

system (but not in the model) causes a bias in the estimate of T.

Figure 2.9 shows the effect of a large mismatch between
continuous system and continuous model, While the cost curves are

convex, the relatively shallow minimum indicates the mismatch,

2.5 Iterative Gradient Search

Again, consider the noise-free modeling scheme of Figure 2.1.
Assume a zero-order data hold and periodic impulse sampling with
unknown period T and that the form and order of the continuous
system is known; however, the coefficients of the differential
equation of that system must be estimated. The sampling interval T

is unknown and it is desired to develop a method for determining an
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estimate of T as well as other system parameters by employing a
gradient search procedure, As before, it is assumed that the system
is noise-free and that only the output variable of the system is
available. A discrete gradient method will be used in order to avoid
the mathematical difficulty encountered when a gradient operation is
attempted on either a time-varying scalar or vector [34]. The
procedure will be to find the gradient of the cost function with
respect to the variable model parameters and then increment each of
the model parameters by an amount proportional to the gradient in
order to eventually minimize the cost function. The model

parameters and the sampling interval E‘ are varied, as necessary, only
at the end of each iteration cycle and are then held fixed during the
next iteration cycle. While discrete gradient adjustment techniques
have been used previously for model coefficient adjustment and
subsequent system parameter identification [34], the extension to the
problem of determining a unknown sampling frequency has not been
previously reported. The sampling intexlval global sensitivity
function which is employed was defined and discussed by Bekey and

Tomovic [81].

From (2.1) the scalar cost function is

T

TG 1%, %, r(t)) = fézl(t:x.r(t)) - 2 e, r(0)) 2at (2.23)

Fixing T and x, (2.23) will be designated by J(%, r(t)). Note that

1 ~1

z” and Z° are the scalar output variables of the nth order system



49
and the nth order model respectively. We apply the gradient operator
(with respect to the sampled-data model adjustable parameter vector %)

to J in order to obtain the m dimensional gradient vector
T
- _ 1 al, o 2
Vo [T (%, )] = | [z (tix,r®) - 2 (6, vt (2.24)

corresponding to the components of the m dimensional model

parameter vector

~
~

% =[5, T, L7 (2.25)

Recall from Chapter 1, that m = (h+1+n) < 2n +1. The components
of % will then be adjusted in accordance with the sign and magnitude
of the components of (2.24) and the iteration over [0, T] will begin

again.

Two distinct methods of calculating the components of (2,24)
will be described. The first is an approximate method [341] vielding
the discrete approximation to the ith component of the parameter
vector %X for the jth iterative computation of the parameter vector,

With appropriate notational simplification, this is given by

2.1_1
' |
o% - a 5‘<].1

i}_] (x].,r(t))~ I(x.L,..., ,>‘<]. AT, LR, ) -](xj)

(2.26

i=1,2,...., m
Note that if the parameter vector is m dimensional, then m+1
computations of (2.26) are required. This method is well-suited to

hybrid computation.
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The second method, better suited to strictly iterative mode
analog computation, will extend use of the discrete sensitivity
difference equations as defined by Bekey and Tomovic [81. The
development leading to them is as follows: Perform the differentiation

indicated by (2.24) to obtain

-
vy [1&.r®)] = -2 ﬁzl(t;x,r(t))-al(t;&,r(t)»v%[zl(t;sc,r(tn] at (2.27)
0
Details of calculating the vector [vi“c ’21( . )] will subsequently be
discussed. We first point out that the iterative adjustment procedure
is carried out in the steps

(a) Start with an initial parameter vector

~ -~

- — -~ 7

where the { . ), refers to the first iteration.

1
(b) Obtain the components of the graident vector from either
(2.26) or (2.27). Call this Vg [J(%,,r(t))]

(c) Compute the new parameter vector from the iterative steep

descent equation [34]
Ry, = %) - K e [I®,, r()] (2.29)

where K, is a matrix, in general. When K. is optimally

1 1
selected, (2.29) is called the steepest descent
equation. [371].

(d) The general parameter correction formula is

Ry =%, K [ I& , r@)] (2.30)
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There are a variety of ways of selecting Kn and Table 2,2 is a

collection of some of the expressions for this matrix [34,35,36,37].

See the Appendix for details.

Mention should also be made of the

optimum gradient method of McGhee [38] although the scope of the

present study and space limitations make it unsuited for discussion

here,

Table 2.2: Gain Matrix Expressions

Steerp-

Newton-Raphson:
Gauss~Newton:

Gauss-Newton (modified):

Descent:

Notes

K=20 1

n n

T -1

— I - - 7 '
Kn— I:ZJU (sz)(O“(sz)) d{‘

0 T

e

0
K=kI; "'k=0

R R -1
(k,T) (s (k,T))" d%

) H_ =V, 0&_.0)]

2) tr(sz) is solution of the dyna-
mic sensitivity difference

equation of the model,
3) Iis the unit matrix.

4) n is the iteration number.

The components of the gradient vector V}—E[zl( )] in (2.27)

can be evaluated at the end of every iteration interval [O,T] by

using the approach suggested by Bekey and Tomovic [81 which

employs sensitivity analysis and difference equations. As pointed

out in [34 Jthe parameters must be held constant over an interation
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interval [O,TJ, otherwise the gradient operation is not defined, The
difference equation approach is well~suited to this requirement, and
is formulated as follows: [34,86,87 To the solution of the vector
differential equation to the model of Figure 2.1 and for the initial
conditions vector Z, there is a vector difference equation representing
the solution at the particular sampling instant t = kz"f‘;

(k2 =0, 1, 2,000l From (2 .3)’ the differential equation of the

continuous model for t2> kZT is

-~

= i(2, B, 2(), Lk, T)= 2(k,T) (2.31)

N2

218

The difference equation representation of (2.31) is chosen in such a
way that it describes the solution of (2,31) at the sampling instants,
One way to obtain the difference equation is to use the continuous

solution of (2,31) for te(kZT, (kz+1):f‘) . This is

t
3k, 7,5, Uk, D), 20) = f i2,8,80)ds +2(k, D) (2.32)
k,?

For the feedback configuration of Figure 2.1, and for t = ((k2+1)"f'-s) .
where ¢ is small and positive, we will represent (2.32) by the

difference equation
Z((k2+1)T; sz,x,z(sz) ,r(sz)) A F\:z(sz) ,p,T,r(sz)] (2.33)
The correspondence between the terms of (2.33) and (2.32) is clear.

Note that (2.33) is an n vector, Following l?ekey and Tomovic [81],

the vector sensitivity difference equations required for (2,.27) are
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next obtained. We first translate (2.33) back in time [87] to obtain

2k, Ti(k, -1 T2, 2((c,- D) ,r((k2—1)®)=?[2«k2-1)'f) ,ﬁ.f,r((kz-l)ﬁ]

(2.39
and then apply the parameter gradient operator, defined by
9 9 9 o] 0 2] 0 d
V;{= __T‘_i_l _:__2_1 ooo-o,___:Hl __:l Al: ___:?l oo 00804 — (2‘35)
o9p~ oOp op~ 9T 8¢ o ° 9%,

to (2.34). (In (2.35), ZO éZ(kz"I\‘=0)) . Adopting a more concise
notation, the three sets of differential equations resulting from
applying (2.35) to (2,34) are written

n

1 -~ ~~ ~k _ ~ "
o2 ,(k.zT) ) oF( .) . Bz“((kz‘ 1)T)+ 81’1.( .) .36
85’ 02°((k, - DT P’ 5%}
3 “~ 1 ~3 ~ ~3
82" (k,,T) oF( . ) 82"((k,-0D  oF(-)
27 — 2 s
oT a'ék((kz-l)'l‘) aT aT
k=1
oFi( +) ar((kz—lﬁ)
+ = ° = (2,37)
8r((k2—1)T) aT
8Ei(k2'f) afi( .) -a‘zk((kz-l)i") oFi( +)
g K ~ 59 s (2.38)
k=1

where (i, g=1,2, eee,nand (=1, 2, «c.., h), and where

the partial derivatives (influence functions)
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of 2 with respect to the parameters, iﬁitial conditions, and sampling
interval are to be regarded as the perturbations of the solutions 2
when evaluated at k2§e [0 . T] due to perturbation of the particular

parameter at sz = (0, Thus, we define

i
u,(k,) A ———=— (2.39)
‘15] 2 3?)1
. 5 ai(kzﬁ)
ul (k) A —=——t— (2. 40)
9 5 &5

G,9=1,2, «ee,n);(i=1,2, .., h)

as the discrete sensitivity functions due to parameter and initial
condition variations, The existence and continuity of the above
derivatives is guaranteed by the requirements on f( * ) stated in

Theorem 2.,1. Again, simplifying notational dependence, we define

(2'(x, (T+AT)) - 2k, ) |

i .
u%(kz) = lim

1 (2 [} 41)
AT—0 AT
(F (k, (T+aT) - F'(k,, T))
= lj,p’l ~ F3 (2 . 42)
AT—0 AT

(i=1' 21 ecey n)

as the discrete sensitivity function due to sampling interval
variation. The existence and continuity of this derivative is assured

if we require that Fl( » ) be differentiable with respect to T,
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Bekey and Tomovic [81 have termed (2.42) the global sensitivity

function for the sampling interval,

The initial conditions for the discrete sensitivity functions
(2.39, (2.40), and (2.41) are obtained by determining the effect of
changing either a parameter, the sampling interval, or an initial
condition at the beginning of the iteration interval, i.e., when

k. T =0, Thus

2

WL0=0 (=1,2, ..., 0, G=1,2, .0, B (2.43)
p

W (0 =0 (i=1,2,...,0 (2.44)
i

ulZ S0 =10 G=9 Gg=1,2, .., n (2.45)
0

=0 (#9

We can now write the difference equations (2.36), (2.37), and

(2.38) in discrete sensitivity function notation as

o 30k ,~ 1T, B, r{(k,, -1 D)

o (k) = - u*(k,-1)
g 2 2~ (k- 1. p 2
k=1

Ai -~ AR ~

o Bty Bl p-07]
8“k !
P

o (0) =0, ' (2.46)

p
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n

. oF[3((k - T). 5,7, r((k, 1) T)
ula(kz) =Z [Z 2 p, L, Tk, ] uk?f'(kz-l)

T a%k«kz—nf)
k=1
. afl [%((kz-l)T),-‘ﬁ,T, r((kz-l)T)]
9T
) al?i[a((kz:u%),pﬁ,r((kz-n%)] 0T
or((k,-1)1) oT
uiT(O) =0 (2.47)
n '\iI: ~ ~ . "‘]
. oF ‘\((k _l)T)lﬁlTl ((k "l)T)
i k) = ) 2T LK (e
t5 92" (k,-10T). 9
k=1
. aFl[E((kz-l)T,ﬁi'T.r((kz-—l)T)] .

7

atg

uiAg(o) =1.0 (i=g)
% (2.48)
=0 (i#9

(ilg=1l zl °°°In)l(j=ll zl OCOIh).
These are the discrete sensitivity difference equations for the model-
matching configuration of Figure 2.1.

It is shown in the Appendix that for a simple sinusoidal driving
function

r{t) = Asinwt (2.49)
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that the corresponding derivative term of (2.47) is

dr (kz—l)%j’ _ L ..L('E)
_L—eﬁ g1
- %[042-1.)’ff.((‘k2-1)"r‘)] (2.50)

Since this holds for a simple sinusoid, then for any r(t) having a
Fourier series expansion (in terms of sines and cosines) it is clear

that (2.50) would also apply.

Recalling that we desire the vector V.'S{L'ﬁl(t; %, r(t)] for use in
(2,27), we can set up the discrete sensitivity equations (2.46),

(2.47), and (2.48), along with (2.50) and solve for u:'L j(kz) . ui‘(kz) ’

D T
and u (k). Then the components u (k ), u A(k ), and u1.~ (k.,)
~g 2t g 2

QO p T QO

would be used in (2,.27). It is helpful to observe [8] that the
structures of the models necessary to generate ut (k ) and u (k )
B 9
0

are the same as the model of Figure 2,1. The model required to

generate ulk(kz) is complicated, however, by the second and third
T

terms of (2.47). This will be made clearer when dealing with. the

example to follow,

We can now write the representation for (2.27) in terms of the

discrete sensitivity functions so that
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valI®, )= -2 (1t %, £®) - 2 @R vy B R, 0] at
0

can be represented by

v &, )] ~ -2 [(zl(t;x,r(t)) 21, r0))

\

1 .
u Zn(kz)
0

/

(2.27)

dt, (2.51)

where k, is such that sze[O, 7]. When k,T =1, the parameter

vector is updated via (2.30) and the next iteration is begun., The

mechanization of (2,30) and (2.51) will be illustrated by an

example,

Before presenting that example however, it is pertinent

to remark that the difference equation representation for linear and

nonlinear systems leading to the general equations (2.33) and (2.34)

has been discussed by Kalman and Bertram [861].

Bekey [871] has
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shown how to obtain the difference equation (2.33) by using either
the z-transform of the continuous linear elements, or by working
directly from the control system diagram by first assigning state
variables. The latter method is particularly well-suited to setting
up the difference equations for nonlinear systems where the z-transform
does not, in general, exist for every element. Note that once (2.51)
has been calculated, then the updated parameter estimate can be

obtained from (2.30):
%, = % -K vo []'(x, r(t))] (2.30)

n+l

2.5.1 Example of Gradient Search

Results are available in the study of the use of the gradient
technique to identify the unknown parameters of a closed loop
sampled data system when these parameters include the unknown

sampling interval T,

Example 1: Let the continuous system and continuous model of

Figure 2.1 be linear with differential equations as follows:

System: g;z- Ku(t); z(t=0) = 0 (2.52)

Il

Model: Kt (); 2(t=0) = 0 (2.53)

dz
dt
It is desired to estimate the sampling interval T of the sampled-data

system of Figure 2.1 and the gain K. A steep descent mechanization

will be used to vary the estimates T and R of the model,



60
Using the zero-order data hold, the output at the sampling

instants kZT of the model loop is obtained, in this case, by
z-transforming the combination of the Laplace transform of (2,53)

and the zero-order data hold with the result:

Z[l—z K]_(z X (2.54)

where Z( + ) indicates the z-transform operation, Using (2.54),

the forward loop transfer function of the model is

1 % ﬁ G (2)
27 (2) = —— ' (2.55)
(z-1)

The resulting difference equation for the forward loop is

’21((k2+1)T) = al(sz) + TR (k,D). (2.56)

Now

Ak,D = rk,T) - 210k, (2.57)
(kz = 0' 1 ? 2 1 * o .)

Substituting (2.57) into (2,.56), the output is
2140, +0T) = 3106, + T [rli, D) - 21,7 (2.58)

=3k, D (1 - TK]+ T Krlk,T), (2.59)

(kz =0.1 1: 2: ooo)

with the initial condition El(t=0) =0,
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The associated sensitivity difference equations are obtained

by using (2.46), (2.47), and (2.48) along with (2.39), (2.40), and
(2.41), and (2,50), The sensitivity difference equation for the

”»

model sampling interval T is

- -~ - ~ 1 °
1 tr (t)
~((k,+1)T) = K (k 'I’) +TK|l=
i A il { ]uT L Jt

=k2T
-~ *1 -
PPN r(sz) - Z (sz) 1
+TK = : uT(0)=0, (2.60)
T

where (k2=0, 1, 2, eoee)e

The sensitivity difference equation for the model gain is

. . ~n g ~ ~[rlx T)-‘“l(k D]
ug ((k2+1)T) = (1-T K)uﬁ (k T) +TK ; uz(0) =0,
K

(ky=0,1,2, .c..) (2.61)

As remarked previously, the structure of the sensitivity model for
this parameter is identical to the structure of the original model
(2.59). Shifting (2,60) and (2,61) backward, as was done with

(2.34) when developing the theoretical sensitivity difference

equations, we have
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e}

~ -~ ; -~ RPN 1 .
w0, D) = [1 - T K] uk ((k,-)D) + T K[—; tr (t)J X
t=(k2—1)T

oz [r((kz-n"fz - ’21((k2—1):f)]
T r
uk(0) = o, (2.62)

(k2=1l 2' acoo.o)l

and

=32

u§(k2%) =[1 - “] ulﬁ ((kz-l)%)

« - [r«kz-l)%) - 21«k2-1)%)} .
+TK = !
K

u]é(O) = 0, (2.63)

(k2=1l 2l 3' l.oo)o

These are the discrete sensitivity equations which are actually
solved, and furnish a concrete example of the abstract equations
given by (2,46) and (2.47). The equations are solved by simulation
and the solutions are substituted into (2.51), The parameter

vector ?{n +1 for the estimate of x is then obtained from the

algorithm (2,30),

The difference equations were programmed for solution in this
case by noting the similarity of (2.62) and (2.63) to (2.59). The

latter is a difference equation representation of a continuous
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system at sampling instants; therefore, the sensitivity difference
equations were also programmed as continuous systems. The
schematic of the iterative adjustment scheme for T alone is shown

in Figure 2.10, and the schematic for the iterative adjustment

scheme for both T and K is given by Figure 2,11.

Example 2: Let the continuous sytem and continuous model of

Figure 2.1 be nonlinear with differential equations as follows:

System: g—tz = K[u(t)]3 i z(t=0) =0 (2.64)
Model: 2 - KEm13:  20=0) =0 (2.65)

The parameters to be estimated are T and K., The estimates are
"f' and IZ

This example will be limited to showing the formulation of the
discrete sensitivity difference equations for a nonlinear system,
No simulation results will be presented, Following Bekey [81, the
difference equation describing the output of the model at the
sampling instants t=(k2+1)"f‘ can be obtained directly from Figure 2,1

after substituting (2.65) into the loop:
3M((k,+)T)=2 (kD) +K T [r(sz) —El(kZT)]?’; 2(0) =0. (2.66)

Shifting backward to obtain the difference equation as a function of

the last available samples of rt) and z«IC’C)
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~ A

21, 2Nk, -T +KT [r((kz-nE) -zl((kz-lﬁ)f;

210) = 0 (2.67)
(kz= 11 21 3; occ)o

Hence, from (2,33), we can identify
P2 (k-0 5.3, 1 (k-0 D) |

2, -0T) + R T [r((k,-1)D) -2k, |?

slit=0) = 0 (2.68)

-

where D is the scalar parameter K, and where (k2 =1,2,3, caeee
Using (2.67) and (2.68), and employing (2.46) - (2.48) along with

(2.39) - (2.41) and (2.43) - (2.45) and (2.50), the sensitivity

-~ ~

difference equations for the parameters T and K are

ik, D) = vk((k,-1T) 31 - 3K T[r(k,-0T) 2} (0,1 | Z%
+ K [r((ky=1)T) -2}(k,-07) | 3 (2.69)

+ 3R [r(lky-D) - Hky-1D)|? [;E- £(tj ;o
T J=k,-nr

ub(0) = 0

(ky =1,2,3, ...
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and

wlylkg®) = 1 - oRE (e, -0 - 21((kz‘1)ﬂ2]“§((k2-1ﬁ:)
(2.70)
+ i, 0D - 21,0 B] 5 uhio=o,

k,=1, 2,3, ceene)e
The same procedure would be employed to solve these sensitivity
difference equations and use their solution to obtain components of

the parameter correction gradient vector (for the new parameter

estimate i‘an) as was done with Example 1.

2.5.2 Results Of Gradient Search Studies (Example 1 Only)

The gradient search studies were divided into two phases; the
first was a gradient search over E‘ alone with ‘I:'. held fixed and
equal to K=1,0. The second was a simultaneous gradient search
over both E‘ and % In both phases the results were obtained via
the DSL/90 simulation program, The results of the gradient search
over "]?‘ alone are shown in Figure 2,10. The gain factor K1 of

(2.30) was selected as a fixed constant which means that a steep

descent parameter adjustment scheme was followed.

Figure 2,11 shows the schematic for the two parameter

gradient search; i.e., over both T and K,

Figure 2,12 shows the results of the two parameter gradient

search for Example 1.

It is felt that these results are more of academic interest than
practical interest at the present time because of the following

reasons:
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It is generally easier and more economical of programming
effort and computer time to utilize programmed search to
both obtain the optimal set of model parameters for a given
model and than it is to construct separate gradient tracker
programs for each model under coﬁsideration.

There is considerable coupling between the parameters in
even the simple case of the gradient search over two
parameters, For example, it was found that convergence
would not occur for every set of initial values (‘E‘l, Kl')
without the incorporation of considerable logic to
automatically adjust the gain factor ﬁl
prevent % from going negative, (The latter event caused

as well as

the search to terminate by the nature of the DSL/90
program,)

Gradient optimization techniques are really best suited to
situations where a model or system of fixed form but
variable coefficients must be adjusted to satisfy some
optimization criterion, The present task initiated in this
report is somewhat broader in scope: It is to find the
combination of model form and parameter values together
with the value of sampling interval which yields the
absolute minimum of J( « ).

The sensitivity difference equation approach is not suited
to modeling situations where system observations are

noisy. No convergence proof is available, A more
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Figure 2.12 Gradient Search For Estimate Of Both
Sampling Interval (T) And Gain (K) In

First Order System By Means Of A First-
Order Model
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suitable approach to this prdblem would employ

stochastic approximation, This is discussed in Chapter 3.
2.6 Summary Of Results Of Noise-Free Simulations

This section summarizes the respective advantages of
programmed search and iterative gradient search., Generally speaking,
tfle programmed search is to be preferred to the sensitivity equation
formulation of the gradient search for the parameter estimates, This
is because one does not, in general, know the exact form of the
system well enough ahead of time to make it worth the extra
effort necessary to mechanize the gradient search sensitivity
difference equations, In addition, the sensitivity method requires
the mechanization of one additional model circuit for each estimated
parameter, This requirement is obviated, however, if the approxima-
tion to the gradient is used, as given by (2.26), In this case,
the programmed search and gradient method are probably on a par

as far as equipment and programming time are concerned,

Iterative gradient search is useful also when optimizing the
parameters of a particular model, This situation is typical of the

adaptive control problem,

In the next chapter we will present a discussion of stochastic
approximation, a technique which is gradient-like in essence, but
can be used to treat modeling situations where the observations are

noisy.



71

CHAPTER 3
STOCHASTIC APPROXIMATION AND
SAMPLED-~DATA SYSTEM PARAMETER ESTIMATION

3.1 Introduction

Stochastic approximation is a recursive estimation procedure
which can be applied to the problem of either (1) finding the
parameter which causes a regression function to take on some
preassigned value, or (2) finding the value of a parameter which
maximizes (minimizes) the regression function, That is, suppose for
every real valued parameter x, the observed random variable
Y = Y(x), denoting the value of aresponse to an experiment carried
out at a controlled parameter level x, has the conditional distribution

function H(y|x), defined by [40, 41, 88]1
Hiyix) = Pr(Y(®) < y) (3.1)

and the regression function, defined [88]J as the conditional

expectation of Y for the given x, written as

o0

M) = fyd H (y|%) (3.2)

-

1 The notation used herein is that which is standard for the
stochastic approximation literature, It is more concise than the
usual notation found in mathematic statistics texts, as for example,
Cramer [881. In the sequel, we will carefully define all terms as
they arise, ‘
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where the regression function is related to the observation Y(x) by
Y(x) = M(x) +n, (3.3)

where n represents a stationary random process which zero mean
and finite variance, and where neither the exact nature of H(y |x)
nor M(x) need be known [40,411. For the present, Y(x), M(x),
and x will be taken as scalars., In the statistics literature, the
two above problems are called the (1) Robbins-Monro problem, and

(2) Kiefer-Wolfowitz problem,

To be more explicit, in the Robbins~Monro problem, the.
regression function M(x) is assumed to be an unknown monotone
function of x, It is desired to find the particular value of parameter
x =0 which causes M(x) to take on an assigned constant value:

M(x) =a, where o is chosen,

In the Kiefer-Wolfowitz problem it is assumed that M(x) has
a unique maximum (minimum) at x =6 and is strictly increasing

(decreasing) for x < 8, and strictly decreasing for x> g.

The procedures used to solve the two problems are concerned
with making successive experiments at parameter levels
Ryt Xpr eeeno in such a way that X tends to 6 in some probability
sense., In order of increasing strength, there are three types of
convergence: convergence in probability, convergence in mean-
square, and convergence with pfbbability one, The latter is also
referred to as convergence almost surely, These will be discussed

in the sequel,
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While the restrictions and details of the two problems are
discussed below, it is pertinent here to remark that the advantage of
stochastic approximation over the usual regression approach is that
neither the conditional distribution function of the noisy observations
Y(x), here taken as H(y|x), nor the underlying regression function

M(x) needbe known, Thus, it is called a non~parametric method.

Stochastic approximation can be applied to any problem that
can be formulated as some form of regression problem in which
repeated observations are made. To be specific, we will consider
the problem of estimating the parameters of an unknown sampled-~data
system when using the model-matching technique, Reference
Figure 3.4. The cost function is the integral of the weighted error-
squared, and the regression function is _the cost function when the
noise nl(t) is zero, We will use successive observations of the
cost function and will adjust the model parameters as a function of
the observations by means of a stochastic approximation algorithm
of the Kiefer~Wolfowitz type. The aim, of course, will be to
minimize the mean-square error between system and model over
some allowable set of parameters., In general, sequential
observations of the system behavior (cost function in our casé) are
used. However, it is also possible to use the same system input
and output time histories repeatedly, meanwhile adjusting the model
parameters by the stochastic approximation algorithm, In addition
to parameter estimation, stochastic approximation can be applied

to problems of prediction and data filtering [19, 20]. In the
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following short survey, we first discuss the Robbins-Monro and
Kiefer-Wolfowitz procedures, This is followed by a discussion of
the application of the Kiefer-Wolfowitz procedure to the modeling
problem, Then the mean-square convergence of an extension of the
Kiefer-Wolfowitz procedure is proved for the estimation configuration

of Figure 3.4,

3.2 Survey Of Stochastic Approximation Methods

The following is a concise survey of stochastic approximation
methods. Earlier surveys were given by Derman [401, Wilde [48],
Loginov [59], Gardner [7391, and Sakrison [193., The latter two, in
particular, have a number of engineering applications, ‘Th_e present

survey includes recent results not included in the earlier surveys,

3.2.1 The Robbins-Monro Meéethod

The Robbins-Monro procedure was the first stochastic
approximation method [41]1. Let (3.1), (3.2), (3.3) hold, Itis

desired to find the root Xx =0 such that, for a given «
M(6) =« (3.4)

The procedure for finding the root x = 0 is given by the following

theorem, 1

Theorem (Robbins~Monro [411): Assume that for each x there

1Reference Figure 3.1.
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OBSERVATION
NOISE
REGRESSION
FUNCTION
PARAMETERS
X, > yix.)
i M (Xi) + 1
y (x) Blum's Inequality Constraint o
M(x) IM {x) | < dlxl + ¢
a y :
¢ l
. M(x)
hd !
. |
!
® ¢ |
|
c ° )
[ ® I
| ] i X,
. 0 g J
x

Robbins-Monro Problem:
Given O and observations {y(x)}, solve for x = O
such that E{y(x)} = M(0) = a,

Solution: o

. . o - + _
If conditions of 3,2,]1 are satisfied xn_’_1 X an(a y(xn) )

Figure 3,1 The Robbi‘ns-Monro Problem
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corresponds a random variable Y=Y(x) with distribution function
H(y ) = Pr(Y(x) I y); and that there exists a positive constant C

such that for all x

C
Pr(lY()| = C) =de(y!x) -1 (3.5)
-C
I.e., Y(x) is bounded with probability one. Assume that

exist finite constants o and & such that

M) < ao-5 for x<6g, (3.6)
and

MX 2 a+ for x>0, (3.7)

where § >0,

(Note that M(x) need not equal @, nor must M(x) be continuous),

Let {an} be a fixed sequence of positive constants such that

> 2
0< Sa < o, (3.8a)

and

[\/]8

(3.8D)
n:

(For example a_ =1/n,n=(1, 2, ....)).
Take x1 to be an arbitrary constant and define a (nonstationary)

Markov chain {xn} by

X1 = *p + a, (o - yn), (3.9)
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where y  is a random variable! with conditional distribution

function
Hlylx ) =Prly = ylx ). (3.10)
Then
lim E(x_ -9% = o (3.11)
n —00

That is, X, converges to 6 in mean square., This also implies

convergence in probability [891].

Wolfowitz [42] next considered the problem, He showed that
X converges to © in probability under weaker conditions on Y(%).
He replaced condition (3.5) with the requirements (on the measure-

ment noise (y - M(x)))

c'xz = f(y - M(X))2 dH(yl®) < w. (3.12)

He also required a bound on the regression function so that M(x) < o,
where M(x) is defined by (3.2). Blum [43) then weakened the

above conditions, His requirements are:

1Using (3.3), we will define y, as the random variable

y,=Y(&x)=Mkx)+n (3.3a)

where x  is the random variable defined by (3.9).
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2  [IM®)| = c+dlx| for some constants ¢ and d (3.13)
such that ¢ 20 and d =20,

o0
B) sz = f(y - I\/I(x))2 dH (y|x) = o2 < 0. (3.14)
=00
C) M{x) < a for X< @, (3.15)
M(x) > « for X >0, (3.16)
D) inf IM(x) -a| >0 (3.17)

by = [x-8] <6,

for every pair of numbers (61, 8 2) where 0 < 61< 62 < o0,
<2
E) 0< a’ <o, (3.8a)
n:
o0
Zan = o, (3.8b)
n=1

(For example, a_ = A/n where A is a positive constant.)
Then the Robbins-Monro algorithm (3.9) converges to 6 with
probability 1, i.e.,
Pr( lim x =6) = 1 (3.18)
n—o
Subsequently, Dvoretzky £471 showed that under Blum's condition

X also converges in the mean~-square, l.e.,

lim }f:(xn—e)z =0 (3.11)

n~+w
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Thus, both Blum and Dvoretzky obtained weaker conditions
for a stronger form of convergence than Robbins and Monro. The

Robbins-Monro problem is illustrated in Figure 3.1.

3.2.2 The Kiefer-Wolfowitz Method

By the Robbins Monro method one can obtain the roots (Xi) for
each given oy of the unknown regression function M(Xi) =a,.
Following this work, Kiefer and Wolfowitz [44] gave a procedure
for finding the value of x which maximizes the unknown regression
function M(x)l. The main restriction on M(x) is that it must have
a unique maximum, (By suitable modifications the folléwing
theorems can also be used to express conditions for convergence

to the minimum of the unknown regression function M(x)).

Theorem (Kiefer-Wolfowitz [44)): Let M(x) be an unknown
regression which has its (unique) maximum at the unknown point
x = 0, and let H(y|x) be a family of conditional distribution

functions which depend on the parameter x, i.e.,

H(yvlx) = Pr(i¥(x) =vy). (3.19)
Let
00
M(x) = fde(ytx). (3.20)

1Reference Figure 3.2.
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REGRESSION.
FUNCTION
PARAMETERS +
X, —— M(x.) yix.)
i i s i

Dvoretzky's Inequality
Constraint:

[M(x+1)-M(x)|<A K|+ B

X

Kiefer-Wolfowitz Problem: Given the noisy observations f{y(x)}, find
x = U which minimizes M(x).

Solution: If the conditions of 3.2.2. are satisfied, then take

X 41 = x + a (y(xn~ cn) - y(xn + cn) ) .

C
n

Figure 3.2 The Kiefer -Wolfowitz: Problem
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Assume

A) crxz = [(a:f - I\/I(X))2 dH(yl®) < <rz< o (3.21)

Assume the following regularity condition on M(x):

B) (1) There exist positive B and B such that for distinct
value of x given by x” and x”
Ix’ - el +|x* - 6l<p implies
[M(x) - M(x)] < Blx’ - x| (3.22)

(2) There exist positive p and R such that

Ix' -x7l<p implies
IM(x) - M| <R (3.23)

(3) For every &§ > 0 there exists a positive 7 (6) such

that
Ix - 8]l>6 implies
inf  IMGc+e) =Ml =)l o (3.24)
5/2 >e >0 ¢
[0.0]
o Sen = = .25
n=1
o0
Zancn < 00 .(3°25b)
n=1
o0
2
z (an/cn) < o (3 .250)
n=1
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1
(For example: a, =A/n, c, = C/n3 , where A and C are
positive constants, and n =1, 2, veeess) .1
D} Take
- Y -y
X 41 = %, +an( 2n+l c 2n~1> (3.26)
n

where Yoo+l and Yon-1 2r€ independent tandom variables with
respective conditional distribution functions H(ylxn + Cn)
and I-I(ylxn - Cn) . That is, using (3.3a), define

Yon+1 28 the observation of the random variable Y(xn + cn) ,
and define Yon-1 as the observation of the random

2

variable Y(xn -cn) . Then

lim Plix -6l ze¢]=0, (3.27)

n1—00

i.e., X converges to 6 in probability,

1See the Appendix for a discussion of these sequences,

2Using (3.3a), we define the observed random variables
Yix +c)= M(xn tc) tn (3.3¢)
and
Y(x -c)= M(xn -c)+n (3.39)

Departing slightly from the notation of Kiefer-Wolfowitz, we will
henceforth denote for conciseness

Yo+ = Y&k +c), (3.3e)
and

Yon-1 = Y(x -c). (3.310)
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The regularity conditions on the regression function -M(x) are
explained as follows: B(1) assures that the magnitude of the slope
of M(x) is small near the maximizing point 6; B(2) prevents the
slope of M(x) being too large for any point x; B(3) assures the
slope is not zero whenever x #6 thus eliminating the possibility

of flat spots in M(x),

Blum [49] then eliminated the need for conditions (3.22) and

(3.25b) in proving

P{ lim x_ =\e} =1, (3.28)
n—-oo

i.e., convergence of equation (3.26) with probability one. However,
up to this point important regression functions such as M(x) = e ™ '
or M(x) = -—xZ, were ruled out since they do not satisfy (3.22) and
(3.23) for x= 0, Derman [45]1 considered functions whose
difference quotients lie between two straight lines with positive
slopes, Functions like M(x) = -xz, for x 2 0, satisfy these
conditions, He showed convergence of X to 6 in probability,
Finally Burkholder [461 and Dvoretzky [471 obtained the weakest

set of conditions which éllow us to use stochastic approximation

for regression functions such as M(x) = e'_X2 . Burkholder pfoved
probability one convergence and Dvoretzky proved both mean square
and probability one convergence, In Dvoretzky's form these
conditions are (assuming, without loss of generality, that 6 =0

and that we use the algorithm for X1 given by (3.26)):
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B IMx+1) - MGI<Alx] +B< (3.29)

for all x and suitable A, B

B) sup DM(») <0; inf DM(x >0 (3.30)
1/k<x-0<k 1/k<p-x<k
o0
2 = 2 2
C) o, ﬁy - M(x))“ dH(ylx) = 7° < o (3.31)
-0

D) The sequences of (3.25a), (3.25¢), (3.25d).

0

B Mk = fy dH (vix) (3.32)

-00

(In (B) above DM(x) and D M(x)  denote the upper and lower

(Dini) derivatives [581 of M(x) at x and are given by

DM(x = 1 M(x+h) - M
s oi‘ilnlo ( . h b_{)) (3.33)
and

DMx = lim {M(xth) - M(x)

= O%hlfo( = = ) (3.349)

Note that the Kiefer-Wolfowitz procedure (3.26) is simply an
approximate gradient search method, In fact, Loginov [59] points
out that it is simply a stochastic version of an algorithm originally
given by Germansky [603, It differs from the deterministic gradient
procedures in that the multiplier a, is decreased with n rather

than being held constant or increased, Also, the size of §x over
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which the gradient is calculated decreases with n according to the
behavior of C,e The Kiefer-Wolfowitz minimization problem is

shown in Figure 3,2,

Dvoretzky [47] also considered a more general stochastic
approximation approach, encompassing both the Robbins-Monro
process, the Kiefer-Wolfowitz process, and others., In this he
partitioned the stochastic approximation algorithm into a random
part and a deterministic part, and obtained broad convergence
requirements on the two parts. He obtained both probability one

convergence and mean-square convergence for this process.

‘Multidimensional extensions of the Robbins~Monro and Kiefer-
Wolfowitz processes were made by Blum [49). However, for the
latter process he required that M(x) have continuous first and second
derivatives, Furthermore, Blum's procedure develops a one-sided
approximation to the gradient rather than the two-sided approach of
equation (3.26). Sacks [50] stated a theorem for probability one
convergence of a multidimensional Kiefer-Wolfowitz procedure,
Subsequently, Derman and Sacks [511 proved the probability one
convergence of the Kiefer~Wolfowitz procedure by providing a
multidimensional extension and a corresponding probability one

convergence proof of Dvoretzky's theorem,

Later, Venter [52] obtained both mean square and probability
~one convergence for a multidimensional Dvoretzky theorem and thus,
by implication, provided a basis for the mean-square convergence

of the multidimensional Kiefer-Wolfowitz process,
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While the Dvoretzky procedure ié elegant, it beclouds the
simplicity of the more direct approach of the Kiefer-Wolfowitz
procedure. Consequently, in subsequent work the Kiefer-Wolfowitz
approach is used directly., Another reason for doing this is that
Dvoretzky's formulation and the multiple parameter extension thereof
when used for model matching are best suited to the estimation problem
shown in Figure 1.3 when only noise nz(t) exists. In problems of
system modeling, however, the presence of noise nz(t) is usually
of small concern while noise 'nl(t) is very important, Therefore, the
configuration to be analyzed will treat only the case where noise nl(t)
is present. It remains to be proved that the Kiefer-Wolfowitz

procedure applied to this case as well,

The question of the size of the estimation error after k iteration
steps has been considered by Chung [55]), Derman [451, Sacks [501,
and Dupac [561. Chung showed convergence of the parameter
estimates for the Robbins~Monro procedure to a normal distribution
with mean zero, Furthermore, he gave expressions for the upper

bound on the absolute moments of X
() - E[|x_-8| (3.35)
n n ] N

for all r. However, his expressions can be evaluated only when the

bound (o~2) on the noise variance

o0
ol = ﬁy - M(x)% dH (ylx) <o 2 (3.36)
o0

is known,
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Derman [571 obtained similar results for the Kiefer-Wolfowitz

procedure,

The question of an optimal sequence a, or an/cn to minimize
the variance E(xn - 6)2 after any fixed number of iteration steps of
either the R~M procedure or the K-W procedure is of interest.
Dvoretzky [47] solved this problem for the R-M procedure,

Dupac [561 solved it for the K-W procedure. In both cases their
work is for the scalar formulation, Sakrison [65]1 extended Dupac's

analysis to the multidimensional K~W procedure,
For the scalar Robbins-Monro procedure Dvoretzky assumed

o0

A) o4 = ﬁy - M(x))2 dH (y]® = o 2< 0. (3.37)

=00

B) There exist constants A and B such that

0<A5M—%{)_—'91- <B< . (3.38)

C) It is assumed that a constant ¢ 2 0 exists such that

2
Ix_ - GISCS\/‘A—(g—:jﬂ . (3.39)

Then the sequence

a, = 2L (3.40)
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is optimal for the Robbins-Monro procddure and the variance of the
estimates is bounded with the bound given by
2 2

2 ¢
E(x -06)°= (3.41)
n 0‘2 +(n -1) AZC2

The theorem of Dupac [56] which we will use as a reference
basis in proving convergence of the K-W stochastic approximation

procedure for the system modeling configuration is stated as follows:

Assume

A) M(x) is increasing for x < 0, and is decreasing for x> 0,

where
o0
M(x) = [y dH(ylx) (3.42)
B) For every x
O_XZ = ﬁv - MG dHEIN sl < o (3.43)

~00

C) There exist constants K,> 0, K, > 0, such that

0 1
dM
K, |x -0| = I“cﬁ(fl = K, Jx- ol (3.44)

Let an, cn be positive sequenées of constants such that

0 0

0 an 2
im cn=0, Zan=oo, zancn< oo,Z(-é;) < o, (3.25)
1 n

= n=1 n= =1
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Take

_ Vo =Y
X 41 xn+an( 2n:cl: ~2n+1) (3.26)
n

where Yon+1 and Yypn-1 8T independently distributed random
variables with conditional distribution functions H(ylxn + cn) and
H(ylxn - Cn)'l Then X, converges to 6 in mean square. Furthermore,

for sequences of the type

(3.45)

where a =1 implies A >T1 ,the choice o =1, y=1/6 insures that
4 0

Ex_ - 0)2 = o 3, (3.46)

where f(n) = O(g(n)) means lim g%% = K <w, (K can be zero).
n—o

Any other choice of o and Y leads to a worse result, If, in addition,

it is assumed that

< o (3.47)

for x in some neighborhood of 6, then the chdice a=1, Y=1/6

insures that

1 xplici i
See (3.3¢e) - (3.3f) for explicit expressions for Yontl and Yon-1°
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Ex_-6)2 = o(n™%/?) (3. 48)

and this choice is optimal in the same sense.

Sakrison [65) also obtained the same results for the multi-
dimensional Kiefer-Wolfowitz procedure, Refer to the Appendix for

a discussion for the properties of a and Che

3.3 Stochastic Approximation Applied to the System Modeling Problem

Stochastic approximation has been applied to the system
modeling problem by Sakrison [18, 19, 651, Kirvaitis [241,
Holmes [251 and others, Sakrison extended Dupac's work on
optimal sequences a, and c, to the multiparameter case and
treated such regression functions as error squared, magnitude error,
and error to fourth power, He studied estimation of parameters of
nonlinear systems and gave an example of the design of a linear
prediction filter where the gain multipliers of k linearly independent
stable, linear transfer functions were chosen by stochastic

approximation, Sakrison's problem is illustrated by Figure 3.3.

Kirvaitis estimated the parameters of both linear and nonlinear
differential equations, Both Sakrison and Kirvaitis required that
the noise components have bounded variance and also that they be
bounded in magniture, Also, they required that the sy stem parameters

be confined to a compact convex set,

Holmes represented the unknown nonlinear system as an

analytic function expanded in a Volterra series in the parameter x



91

weTqodg §,UoslIyes ¢°¢ oiandig

(x 9)X =

X,
[(3) Ba (3)%u 4+ (AIPIM
YO u¥d JO NOILONNJ
DNILHOIZM XTANOD

SNIVD JHIL

Lsarav ol 3 danaInodd
OILLYVWIXO¥ddV DILSVHDOLS
ZLIMOJITOM-YHAIATHA

%+ @p

NOILVYIJO
n ASNOJSTY
+F7 ()P az¥IsIda
L - (0%
. . 1
T e T 0s 1
WA Y J = ()8 TS (=AY T = ()8 _
“ -3

fa b -

f LR e | .
Zzo AWQ..Q-. g ¢ mvvw hu.v_..n “
l

. =
ﬁm.m foasn ~mnv N )
{ 7. 1.2 o1 |
NIVD (‘seseeclsels)y NO NOILVYIJO (%
¥VANITNON ¥O ¥VENTT |
- T XYOWIN ON - L _
ZH.<0 ‘géeeatTg s 8

L e ermrereys B

QANDISTG Y OL ¥HALTIL JO WHOL

(3=



92

which he then estimated by stochastic approximation., He furnished
estimates of both a linear kernel function and a nonlinear kernel
function of a nonlinear stationary discrete-time control system.

He required that all noise sequences have bounded variances and

that the system parameters belong to a bounded convex set,

3.4 Stochastic Approximation Applied To Estimation Of Parameters Of

Nonlinear Sampled-Data Systems With Noisy Observations

3.4.1 Introduction

Again consider the problem of Section 1.4, This problem is to
estimate all the parameters of a sampled-data system including the
sampling interval, The sampled-data system consists of a sampler,
a zero-order data hold, and continuous dynamics, The sampled-data
system, and corresponding sampled-data model are illustrated in
Figure 3.4, Note that while the input to the sampled-data system
and sampled—data model is scalar, the observed signal is taken as
the noise-corrupted state vector, Later, in the simulation work, the
observations will be limited to the scalar output of the sampled data
system, This will be done because in a number of practically
important problems the observations are limited to the scalar output,
The same limitation is necessary for simulations in order that they

vield a basis for later modeling work with real data.

In the following development no typographical distinction will
be made between vectors and scalars, although scalar components

of a vector will be indicated by superscrip’ts . For example,
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z = (zl, zz, ceeos zn), denotes the relations between a vector z and

its components zl. The symbol (”) indicates the transpose of a
vector, The vectors belong to Euclidean vector spaces and the

Euclidean norm

Nzl = (i(zi)z) 1/2 (3.49)
1=

will be used for norms of vectors., The norm for n x n matrices A

is defined by

n
1Al = Says (3.50)
i,j=1
All statistical averages E( - ) are ensemble averages unless otherwise

noted., The subscript k denotes the kth' iteration so that

7/
2y = (Zkll Zkz, eoney zkn) indicates the vector z and its components
at the kth iteration. We will also use the symbol 0 to denote

both the scalar zero and the vector zero,

Referring to Figure 3.4, the continuous dynamic system is

assumed to be given by

2 = fz, p, uld), 2(t=0) = ¢ (3.51)

where the state vector z and the dynamic system vector function {

are both n vectors, p is an h vector of constant parameters,
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and uft) is an r vector of controls. {In this case r = 1) .1

Corresponding to the continuous dynamic sy stem there is a
continuous dynamic model
dz z

€ -G, p, uw),  zl=0) = I (3.52)

which has vectors of the same dimensions as the continuous system,
We assume the form of the system and model to be the same,

Hereafter, (3.51) will be called the continuous system to distinguish

it from the sampled-data system. Likewise, (3.52) wil} be called

the continuous model to distinguish it from the sampled-data model,

Define the constant parameter vector of the sampled-data system

by the m dimensional vector

x = (p, T, ) (3.53)

This vector is not, in general, completely known, In fact, it may

be completely unknown,

Define the parameter vector of the sampled data model by the

m dimensional vector

-~
Cad

% = 3, T,0 (3.54)

1Throughout, we will use the convention, established in
Chapter 1, and used in Chapter 2, of indicating the solution of (3.51)
by either z(t; p, ¢, r(t)), z(t; p, ), or z(t) depending on whether
we suppress the dependence on parameters, initial conditions, and
rz:ontrc)ﬂ function, The same comment also applies to the solution of
3.52).
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This vector is adjustable, As in Chapter 2, m = (h+14n) < 2n+1,
It will be held constant over an iteration interval of length -
where 1> Eln . This interval will also be indicated by ft'n, tn + T].
where n indicates the iteration number (n =0, 1, 2,.000..).
Indicate by ?cn the nth iteration of the parameter vector of the

sampled-data model, Explicitly, this is

~ ~ ~ - /

%, = B, T, L) (3.55)
At the end of an iteration interval, the stochastic approximation
algorithm, to be discussed, will be used to increment the components

of X . The new parameter vector is indicated by S‘cn_l_l.

Define the observation of the sampled-data system by the n

dimensional vector
vit; x, r(t) = z(t; x, r(®) +n,(t) (3.56)

where nl(t) is an n dimensional vector of observation noise with
properties to be discussed subsequently. Note that v(t; x, r(t)) is

a random vector, Define
«(t; x, %, r(t)) = vit; x, r(t)) - 2(t; %, r(p) (3.57)

as the error between observed sampled-data system and sampled-data
model, This is an n dimensional random vector. Note that when

the system is not completely observable, then some components of

v( * ) will be zero, In this case, corresponding components of 2( « )

and ¢( ) would also be set to zero. In effect, the dimension of
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the vectors defined by (3,56) and (3.57) would be accordingly
reduced, This would be done by indicating explicitly the observable

components of the state and error vectors,

Define the cost function by the integral norm-squared error

function

I(t Tt X, x,r(t)) = ﬁ e(t:x, %, ) Welt:;x,%,r({t))dt (3.58)

where W is a diagonal weighting matrix with positive terms, and is
hence positive definite, Note that J( . ) is a scalar random variable.

As before, T is the (constant) iteration interval,

The Keifer-Wolfowitz stochastic approximation procedure for
obtaining estimates ?cn of the sampled-data system paraineter vector
x will nowbe described. We choose the sequences of positive num-

bers {an} and {cn} which have the proper’cies1

1We can show that the sequences a, and . with properties

described by (3.59) and (3.60) also satisfy the orlglnal K-W conditions

(3.25). We have only to show that Z a.c, < o and that fa =0,

rFl
But from the analysis given in the Appendlx we can write

N 6
ac = iAC/ nl/ < ®
Z,/ n'n
and n=1 n=1
00 o0
Zan = ZA/n = o0
n=1 n=1

Hence (3.59) and (3.60) imply (3.25),
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lim a_ = g0, lim cn=0
n-—o0 n—ow

2 8y = {3n
E = =, E 5 ] <
n=] B =1\

Specifically, we will follow the work of Dupac [56] and Sakrison [65]

(3.59)

in choosing

a = A/n, and c 6 = C/ n1/6 (3.60)

for optimal convergence properties of the Kiefer~-Wolfowitz algorithm,
In (3.60) A and C are positive constants, and ne [1, 2, vveveescos)

is the iteration number,

Define by e the mxm matrix of m dimensional natural basis

vectors

s s s O

e=(e1,e2, e, €M = (3.61)

Qe o °© QO =
ODe o ¢ OO

OO0 0 o O

—_Oe

Define the 2m perturbations of the m dimensional model

parameter vector by

& (1) — i D =
Xn('l'l) b Xn+ecn (1"' 11 21 o0 ew m) (3062)

and

%n(-i) = 3\{ "eiC (i': 11 2: ceoey m) (3'63)
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Note that only one scalar component of ?{n is perturbed for each value

of the index 1.

We now use (3.58) and define the scalar random variables
resulting from employing the perturbed parameter vectors (3,62) and

(3.63)., These are the 2m scalar cost functions, which we define by

t +7T
1 8 o L1 2
Yont1 = V€ (t; x, (& +e'c), r{thu7, dt, (3.64)
n \
t +2T
1 ! . 1 2
Yopoy = [JMeltix, (X -e c ). r) %, dt, (3.65)
t +7T
n
tn+(21-1)'r
i _ . a i 2
Yomt1 = JU€ 6 x, (R +ec), r(t)) 115, dt. (3.66)
tn+2(i—l)1'
tn'l‘ZiT ,
i _ o s
an_l - It e (tl X, (Xn e Cn) ] r(t)) I W dtr (3967)
tn+(Zi—I)T

(j.:z, 31 LR ) m)

where the integrands are quadratic forms with the weighting matrix W,
i
2n-1 a

observed random variables, Also note that one complete set of

Note, by referring to Figure 3.4, that the Y;n +1 and y re

iterations is obtained in 2mT seconds, Successive time histories



100

of z(t; x, r{t)) and E(t;(in + eicn, rit), i=1,2, ..., m are used

in the above procedure; hence, it is suited to real time estimation
problems, However, it is also possible to use the same time

history of z(t; x, r(t)) repeatedly, while generating the successive
model state vectors 2(; (?{n £ eicn) ,r®), i=1,2, oo, m,
Naturally, in the latter case, we would use the input r(t) corresponding
to the particular z(t; x, r(t)) which we are using. The convergence

theorem, to be discussed, will work for either procedure.

Using the set of 2m scalar cost functions given by (3.64) -

(3.67), construct the m dimensional random vector defined by

(1 _ 1 )
YZn-l yZn-l'»l
2 ——
yZn'--l y2n+1
Vone1 = Yonet =1 . (3.68)
m _ m
LYZn-l Yon+1

Notice that each component of this vector is an observed random

process,

Now define the stochastic approximation algorithm which will
be used for successive estimates ?{n of the m dimensional

parameter vector x of the sampled-data system, These estimates

are defined by
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-~

Borl = Zat 2Won0 " Yone)/Cy (3.69)

where 3‘{1 is a chosen m dimensional vector having finite components,
Notice that all iterations of (3.69) yield random vectors ?{n +1
since (3.68) is a random vector, Since this algorithm has the same
form as the well-established Kiefer-Wolfowitz algorithm, (3.26), it
will subsequently be referred to as such, We will subsequently
state and prove a theorem for mean square convergence of ?{n to x:
written as
lim E [Hin - x“z] =0 (3.70)
n—-o0

At this point, it is interesting to compare (3.69) to the
algorithm for the usual steep descent gradient search, given by
(2.30). Cl_early, the positive number an corresponds to the
positive gain Kn' and the random vector (YZn--l - Y2n+1)/cn can

be regarded as an approximation of the gradient vector

Ve [Iri %, %, x®))] .

An assumption of a unique minimum of J( ), given by (3.58),
is required in order to prove convergence of the K-W procedure
(3.69) to the vector ?{n = X, where x is the parameter vector of
the sampled-data system, and i?cn is the nth iteration of the parameter
vector X of the sampled-data model, In practice, a quick scan of
% over the space of possible parameter vectors may give some idea
of local minima of (3,58). Then the K-W stochastic approximation

procedure of (3.69) can be employed,
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From (3.69), and recalling (3.62) to (3.67), it is now clear
that (y2n-1 - y2n+1)/cn is a random vector conditioned on the
sequence of random vectors {?{n, in—l' ceses 5‘{1} . For conciseness,
we will usually indicate this sequence by {?{n} . Thus, we will
describe Yon-1 and Yon+1 35 statistically independent random
vectors with respective conditional distribution functions

H(yixn - Cn) and H(ylxn + cn) .

Now, using (3.64) to (3.67), we define the vector-valued
deterministic regression functions underlying the random vectors

Yon-1 and Yon+1 by the m dimensional vectors

<
|

2n-1 = Wonog|mp® =0, (3.71)
and

Monsr = (Y2n+1]n1(t) =0). (3.72)

Assuming that the noise vector nl(t) is a stationary finite

variance random process with components having zero mean, i.e.,

E[nil(t)] =0, @{=1, v, 1) (3.73)

and that the noise is not correlated with either z(t; %, r(t)) or

2(t; %, r(t)),so that

” E {nl(tl) z’(tz, X, r(t))] ” =

N4 _
E[nl(tl) 2(t,, %, r(t)):HL— 0
3.74)
for 1:1 and t2 belonging to {tn, tn +21T], (A=1,2, connes, m,

and t e [0, ©), then it will later be shown that
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E[(yz'n-l il an+1)|xn] = Man-1 " Mans (3.75)

where the dependence of Yon-1 and Yon+1 OP the sequence ?{n is

clear from (3,.64) to (3.67). Thus, our definition of M a

2n+l1 an
MZn-—l as regression functions satisfies the usual statistical
definition that the regression function is the conditional expectation

of v, 47 @nd v, _; forthe given %X [881.

Another requirement that we will place on the noise vector nl(t)
is motivated from consideration of (3.56) and (3,.69). Notice that
the parameter estimates '}‘{n are generated as functions Qf the noisy
observations v(t; x, r(t)) of the sampled data system, Recall that the
proof of the existence theorem for differential equations, stated in
Chapter 2, required that the parameters lie in closed balls. One
way of conforming with this requirement, is to require (1) that the
components of the first estimated of these parameters, given by 5“:1,
must lie in a closed ball, and (2) that components of subsequent
estimates ?{n must also lie in a closed ball, From a consideration of
(3.58) and (3.69), it is clear that in order to satisy the latter require-
ment, we should place a magnitude bound on the components of the
observation noise vector [241, This will then assure that the compo-
nents of the resulting parameter estimate vector §n+1’ as obtained
from (3.69), will be bounded, This restriction is expressed by

requiring that a constant C < o must exist such that

Pr {llnl(t)lls C} =1, (3.76)
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Requirement (3.76), together with (1) above, insures that
the components of all parameter vector estimates ?cn will lie
within a closed ball, Closed balls are convex [671, are bounded
and hence the set of points within the closed ball is compact [£331.
Equivalently, by requiring that the components of 3‘{1 lie in a

convex compact set, together with (3.76), would insure the above

boundedness of the components of ?{n.

3.4.2 Mathematical Basis And Mean Square Convergence Proof

The purpose of this section is to prove me an-square convergence
of (3.59) to the parameter vector x, where x is the system
parameter vector given by (3.53). In the sequel, this ﬁxéd vector X
will be denoted by 6. We will first state several supporting
theorems from differential equations, so as to provide an analytical

basis for the convergence proof,

Reference has already been made to the work of Dupac [561
in proving mean-square convergence of the scalar parameter
K-W procedure, Sakrison [65] and Kirvaitis [24] followed
with similar proofs for the vector parameter case. However,
Kirvaitis imposed a number of restrictions on the vector
B((YZn—l - Y2n+1)l§n) . In this work we achieve the same
result, more fundamentally, by placing differentiability
restrictions on the continuous model f( « ) and of course on
f( » ) also, Thus, in general the approach taken here is to

treat the entire estimation configuration of Figure 3.4
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and in so doing place restrictions on f( + ) and f( « ) which then

guarantee the desired behavior of E((yZn_l - Y2n+1) I xn) .

3,4,2.1 Theorems From Differential Equations

The following existence and uniqueness theorem for ordinary
differential equations with controls is well-known [331. We here
paraphrase it in terms of the differential equations of the continuous
model since ultimately we will want sufficient conditions under
which the first partial derivatives with respect to parameters of the
solution of this differential equation are continuous and bounded
functions on a compact set, Real variables are assumed throughout.

Reference Figure 3.4.

Theorem 3,1 [33]. Let functions I given by

ai -~ 3 ™4
- fe, 00, 0 20 = U (3.52)

(1=ll 2' ..'ln)

together with the partial derivatives 8i‘1/ 529 i,9=1,2, ¢cee, D)

exist and be continuous functions from the cross product of open

sets in En+r+1 (given by 78 x U' x (Tl’ TZ)) into El. Let Q(t)

be a vector of piecewise continuous functions from (tl, tz) into Ur,

2 /

T
r eeesl) .

Then there exists a function ¥ from an interval (tl' tz) C (Tl, TZ)

where the vector of values of u(t) will be denoted by (ul, u
containing t into Z" with components =1, 2, cees 1)
such that y is a continuous function on (tl, tz) , U(t=0) =L,

.~
i, ,
and ¥ is a solution of
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%qi‘l';fsi(@. Ult), t); i=1,2, «u., n) (3.77)

for: all but a countable set of points in (tl’ tz) . Furthermore, the
solution ¥ is unique for the given { and G(t) data.

n+r+l

Remark 1: While the above sets in E are open, the proof

requires that (z, u, t) lie in corresponding compact convex

r

(closed spheres) subsets of the open sets Z°, U', and (Tl, T

9)
respectively,

o

We next consider the case where f containsan h dimensional
constant parameter vector P, For reasons mentioned above, we
desire that the solutions $1 (i=1,2, ..., n, which will later be

-

written informally as zi, be differentiable with respect to each

f)j (j=1,2, ..., h), and that these derivatives exist and be
continuous functions on open sets (and hence bounded on a compact
subset [671). A theorem for this case is also well known [32, 801

and is here paraphrased in terms of the variables of the continuous

model,

F .
Theorem 3,2 £32,80]: Let the functions fi, given by

al ~ s ~,
€ - Fe, 50, 2=0=01 G=1,2,...,0(3.78

together with the partial derivatives of/ 929 and of'/ 8’;3]
(i,9=1,2, vae,n), (=1, 2, ..., h) exist and be continuous
functions from a cross-product of open sets in En+h+1 (given by

h -~

z" x PP x (Tl' TZ)) into an open set R in El, and let f satisfy
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h

a Lipschitz condition in 2 uniformly on Z" x P" x (Tl’ T

2) °
Then there exists a solution §j from an interval (tl, tz) - (Tl' TZ)

containing t; into En with components (:Pl, :132, ceer ;n) such

that the :pi i=1,2, ..., n) are jointly continuous functions of

2, P, and t, the 3:'1/ 8’pj and a;i/ 329 exist and are jointly continuous
in t, 2, and P, and the mi are solutions of

1 -,
ddl't = f]-(:I’I ﬁ: t)l (i=1; 2, ...:n) (3'79)

for all but a countable set of points t in (tl, tz) , and Y(=0) =&,

Furthermore, the solutions %' are unique for the given & and p data.

Remark 1: The existence and continuity of the 8?1/8'2~g on a compact
subset of En bl I:h X (Tl, TZ) is a stronger sufficient condition
than the Lipschitz condition for the uniqueness of the solution &;
see Theorem 3.1, Remark 1, Hence the requirement of the Lipschitz
condition can here be omitted. In fact, the existence and continuity
of the 8?1/8'29 (on a compact subset of Zn X I;h X (Tl, Tz)) imply
the above Lipschitz condition [73]. Note that the existence and
continuity of 3:?1/ A implies the existence and continuity of

ot /509 [801.

Remark 2: Consider the system

ﬂi e -
E- =12, 5,80, 0; 3e=0)=¢, (=1,2,...,0 (3.80)
Let the P: afl/azg' and aflleﬁjl (ilg=1': 2: sso0 s n): (j = 1: 21 oopH

exist and be continuous functions from the cross-product of open
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set in En+h+r+1 (given by A Ph X U X (T Tz)) into an open
set R in El. Let T belong to Zn, tg belong to (Tl, Tz), 'p belong

oh

to P, and let G(t) be a piecewise continuous function from

(tl, t )C (T , T ) into a.r (i.e., let 0(t) take its vector of values
(u . u ) eeos U ) in Gr). Then, the hypotheses of Theorem 3,1
and Theorem 3.2 (with Remark 1) are satisfied and there exists a
solution ; from an interval (tl, tz) C (Tl, TZ) containing t0 into

] ” -~ i
7™ with components (\JJl, HUZ. vve, U such that the ¥,

all‘i/ 3§j, and 9411/ 829 are continuous functions of (2, B,

U, t),
and the q’i i=1, 2, ..., n) are solutions of
‘—gz} = £, D, 1®, ), G=1,2, ..., ), (3.81)

<)

on all but a countable set of points t in '(tl, tz) , and §(t=0) =
Furthermore, the solutions ‘Plare unique for the given §, p, and
Ui{t) data. Asin Remark 1, the existence and continuity of

Bfl/ 929 imply the existence and continuity of afi/a?,g.

We next incorporate f( ) and f( « ) in the feedback
configuration of the parameter estimation scheme of Figure 3.4.
Recall that the parameter vector of the sampled-data model is

n -~ A /
given by = (p, T, ¢), and the vector (YZn-l - y2n+1) is defined
by (3.68). The boundedness of the vector of partial derivatives
g_g; ((y2n-1 - y2n+1)lxn) is an important requirement for our
subsequent mean-square convergence proof of the K~W parameter
estimation algorithm for the model-matching configuration of

Figure 3.4. The following theorem states sufficient conditions
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such that the components of the vectors of partials
9E ( - % - - *
= k(YZn-l Y2n+1)lxn) and gz}i((YZn_l y2n+1)lxn) are bounded.
The boundedness of the remaining partial derivative,

_g_g_((yz_l - y2n+1)| xn) will be discussed in the sequel,

Theorem 3,3: Let the assumption on noise nl(t) given by (3.73)

and (3.74) hold., Let the continuous system and continuous model
of the model-matching parameter estimation scheme of Figure 3.4

be of identical form, and let the continuous model be given by

%?-: £f(Z, p, 0, v, Zt=0)=¢, (GE=1,2, .., n) (3.82)

where all notation is as in Theorems 3.1 and 3.2. Let the f',
8fi/3‘2g, and 6fi/8?3j (i,g= ll 21 eo o n)l (j = ll zl Ol'l'h)

exist and be continuous functions from the cross product of open

nthir+l given by 7™ x Ph
1, where { belongs to Zn, P belongs to Ph, and {(t)

sets in E x U x (Tl' T2) into an open

set R of E

is a vector of piecewise continuous functions taking its vector of

~

values % in U'. Specifically, let Q(t), as obtained from the
zero-order data hold of the sampled-data model of Figure 3.4, be

given by

o) = r(kzl'f) -El(kz"f) (3.83)

2

and where ‘21 is the output components of the state vector of the

where t: k,T =t < (k2 +1) T

sampled-data model Z as defined below, Then the vector (3.75)
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Blan-1 = Yonel®) =My y = Mppyy (3.75)

is differentiable with respect to the model parameter vector p
and the initial condition vector Z, and the components of the
vector derivative are continuous in (2, P, @, t) and are bounded
when (2, 8, U, t) belongs to a compact subset of .

‘in x;‘h X alx (Tl' TZ) in En+h+20

Proof: The hypothesis is the same as that of Theorem 3.2 with
Remarks 1, 2. Hence the solutionqi is unique, and the :Pi,
50/529, and 801/08) (i, 9= 1,2, s ), (1=1, 2, ..v, )
are continuous functions of (2, P, @, t) and the a?i/aig

are continuous functions of (Z, g, a0, t. In paﬁicular, if

(Z, D, 0, t) is constrained to a compac’t subset of

h

z x P x U1 X (Tl' TZ) then the continuous mappings

84’1/%9 and 84‘1/8;'5] are compact, and hence are bounded E671].

Hence, from (3.68) and (3.75), introducing appropriate
",
notation and subscripts, representing y by 2 for natational

-~
convenience, and writing @ ={p, §), we can express the (h+n)m

dimensional gradient vector



oE (ty, . ~-v NR) =8 (M -M. )
55 2n-1 2n+1"1 95 2n~1 2n+1

4

t .
n .
=—2¢ °

t +2mT
n

L tn+2 (m-1)r

+2

L . ® L L]

t +2mT
n

[arva |

\
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tn+ T
%%’(t;(?{n-elcn) ,r(t))W[z(t;x,r(t))fE(t;(S‘cn—elcn,r(t))] dt
]%%’(t;ﬁn—emcn) ,r(t))W[z (t;x,r(t) r-'z‘(t(?.{n-emcn,r(t)):l dt
4 t +7T
n
v/é:(z;t’(t;(37:n+elcn) ,r(t))Wl:z(t;x,r(t)) —'73(t;3“<n+e16n) ,r(t))] dt
t
n

v/é%/(t;;{n+emcn) JO)W|z(tix, r(t)) ~2(t; (§n+emcn) ' r(t))] dt
t +2(m-1)7

(3.84)

where 8/8G is regarded as an (h+n) dimensional column vector,

Because each component of this gradient vector is the definite

Y

/

]

4

integral (of a bounded function defined on a compact set) it is hence

a continuous function defined on the above compact set,

it is also bounded [671].

Hence
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Remark 1: Since the components of (3.84) are bounded then

“_g% (YZn-l "y2n+1)l xn)” is also bounded for the assumed

conditions on the noise nl(t)) . Then there exist constants

0= K0 < K1 < o0 such that

Ky 1% - 6lis ”_g%: (gnoq - y2n+1)| xn)” sK, % -6l (3.85)

where 6@ is the true vector of parameters of the sampled-data system
-~ /

as given by (3.53) and E[n = ('ﬁn, én) .

Remark 2: By the above treatment, we have established the

boundedness of components of the vectors 9E ((YZn-l - Y2n+1)|§n)

and g_% ((YZn-l - Y2n+1)! xn) . The remaining vector of
8 (pn-1 ~YaneI%y)) 18 %’1% (Vpp-1 = Yonep) %) The

treatment for this vector is slightly more involved. The most
convenient approach is to use (3,.58) and determine whether

_{ifé](t +7;t_, x, X_, r(t)) is bounded for values of T  selected
el n n : n

from the possible range of sampling intervals, We can use the
approximation for the partial derivative given by (2.26). Hence
using (3.58), and for notational simplicity suppressing all but the

significant parameters, an approximation to the partial derivative is

pEG)) E[1, 2 +aD) - 7@, 1)
T = AT -

(3.86)

Using the above assumption on the noise nl(t) and (3.86) the

approximation to the vector is obtained by differentiating (3.75)
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to obtain

BEAan-1 ~ YanttI%y) = B (M) = Mypyg)e (3.87)
oT oT
An approximation to the statistical expectation required in (3.87)
can be computed by time averaging by using (3.58) as follows:
( T ~elc ) % + AE‘)‘-I((?( -elc ) } ) ]
n n’"n n n’n

~(0(& reto ) T+ AT)-T(® +elc).T )

L ] L ] L] o

(& ~elo ), T_+ AD-J(® -ec).T)

9 E - -
=M -M )~ —= -~ j s - j
ar  2n-1 2n+l’— o -(I((xn+e cn) .Tn"'AT)-I((Xn"‘e Cn) .Tn))

&, -e™c,) T +AT)-T(& ~e"c _,T ) ]

_(]((§n+emcn) . 'I'n + A‘E‘\ —]((?cn+e‘mcn § Tn)?]

j=(21 31 es ey (m-l))
(3.88)

where E( ) is here defined as the time average.
In the sequel, we will proceed on the basis of the assumption that

every component of the right side of (3.88) is bounded for each

o~ -

selected value of ‘I‘n when Tn is allowed to vary over the range

”

of possible values that Tn can assume, Hence, we will have
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bounds on all of the components of g% ((YZn—l - y2n+1)| xn) .
Thus by referencing (3.85), we can write

K. Il &n-eu < W8E ((y

<K, UIX -61 (3.89
0 8?( n

an-1 " Yon+) &p 1

3.4.2.2 Convergence Proof of K-W Procedure For Parameter

Estimation By Model-Matching

The following summarizes the above assumptions and presents
the proof of mean-square convergence of the K-W procedure (3.69)

for the modeling configuration of Figure 3.4.

Theorem 3.4: Let there exist a parameter vector 6 for Whiéh a unique
minimum of the cost function of (3.58) exists (when nl(t) is zero),
Let f( * ) and :r:( + ) be of identical form and satisfy the hypotheses of
Theorems 3.1, 3.2, and 3,3, and the assumption in connection with
(3.88), as well as the following hypothesis:

A) Assume that the observation noise nl(t) is stationary

and has the properties

H o E{nl(t)} I =0 (3.73)
. 3
2) ull,. e e s .uln
1 '
i UL .. I = "nzn < o (3.90)
. - L] 1 1
nl * nn
u 1 e . L ] . ] .u

N 7/

ij _ i j Coa o
where u —E(nl(tl)nl(tz)), i,j=1,2, ..., n.

3 [prlnfwls<cl=1.6.9=1,2, ....0 (.70



B)

C)

D)

E)
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4) nE(nl(tl)z’(tz;x)u = HE(nl(tI)% (tz,-?c). =0 (3.74)

Use the Kiefer~Wolfowitz procedure

— n _
ntl = *n ¥ c (Yon-1 = Yon+1) (3.69)

-~
X

to estimate the true parameter vector 6 = x of the
sampled-data system, and assume that X apd 6 belong
to a compact set in Em, where m = (2n+1), and where
x and % are given by (3.53) and (3.54) respectively.

Assume that the sequences {an} and {cn} will have the

properties
o an © an 2

1) zc_ = w, 2) 2(;—) < o0 (3.59)
n=1 n n=1 n

3) lim c_ = lim a_ = 0,
n—ow n—oo

Specifically, {an} and {cn} will be given by (3.60).

Assume that the components of the random vectors

Yon-1 and Yon+1 oT€ given by (3.64) to (3.67) and

i’ i .

that these Yon-1 and Yon+l i=1,2, ..., m) are

statistically independent with probability distribution
. - i - i

functions H(y|.xn -e Cn) and H(y|xn +e C-n) .

i=1,2, ..., m) respectively.

Assume

E [H?cl —Bllz] < K< o (3.91)
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where 321 is chosen as the first approximation to

X=0.

Then the K-W procedure of (3.69) converges to 6
in mean-square, Moreover, the estimate is asympototically

unbiased, i.e., lim E(?(n) =0,
n—o0

Proof: Using (3.69), take the inner product of the error in parameter

estimation (X - 8) with itself,

n+1

2

= 1% -an2
6 i —llxn ol

-~

Il Xn+1

o n
a_\2 2
’(E£> WYy o1 = Yoney ! (3.92)
n

Recalling that Yontl is a vector of random variables conditioned
on the random parameter sequence {S‘cn, R _qr eens ?{1}, which
will here be written as either {?{n}or ?cn, we can write the

expectation [69] of the left side of (3.92) as
E {u X .. -9 ”2] =E[E [u?c ILE (3.93)
n+1l n+1 n *
Next, take the conditional expectation of (3.92)

~ 2;\
E[!l X471~ R Ixn]

= ||3‘<n—9n2+2((3‘<n—6) .2—23(“’2 n—l_y2n+1)lin>').

a_ \2
n _ 214 (3.94)
+(cn) E[HYZn-I Yon+1! |Xn]
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To treat the right side of (3.94), note that for the second term

rd
1 1 h
Yon-1 " Yon+1|
E(v,n_1 = Yons ' 1%) =E | - . %, |+ (3.99)
‘m _ ‘m
Yon-1 " Yan+1
N P
From (3.64) to (3.67) the components of (3.95) are:
t +H2i-1)7
i R i 2
1 -~ = ] . ~
Ely, +11%) =E ZY (e (s, (x +e'c ), (1) dt, (3.96)
J=
t +2(i-1)T
n j.=1“ 2, oao,m)
and
t F2ir
n
s n 3 . 2
1 ~ _ ] . _ i
Ely,, _,|%) =E le (e (530, (% _=e'e ) ,r(®)? at (3.97)
J:.'
n"‘(Zi-l)T

i = ll 21 o o0y m)
Using Assumption (A) and (3.96) and (3.97), (3.95) reduces to

E((an-l - Y2n+l)lxn) = MZn—l -M2n+1’ (3 098)

where MZn-l and M2n+1 are defined by (3.71) and (3.72).
From (3,58), we see that the integrand of J( « ) is a quadratic form,
thus J( « ) is at least locally convex in X for X near ¢ . Hence,

if ;(n # 6, the inner product of vectors

(&, -€) By, | =Yy 4 JIX)) <O, (3.99)
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Consequently, for some constant K0 >0 and ?{n # 6

(&, -0 Bffvpqmy = YonenRn)) <Ko%, - 0% (3.100)

The third term of (3,94) is treated by noting that the definition
of the conditional covariance [69] of a random vector v ,

conditioned on a parameter vector x, is given by

covlylx] = Hlty - Etvi) v - E1) [ x |

(3.101)
=E(y vy’ - Ely1x (Ey1x)
Therefore,
E(y v7|®) = E(yl=) (E(y 1) + cov (y1x) (3.102)
The trace of (3.102) is
tr[E(y y’lx)] = tr[E(ylx)(E(y!x))’] + tr [cov (y|x)} (3.103)
Hence, for y an m vector, (3,103) reduces to
m 13
El:llyllzlx} = E(y|®) Hz + ZGz(yllx) (3.104)
| i=1

where <r2 (yll X) is the scalar variance of the random variable y1
conditioned on the vector x, Applying this result to the third term

of (3.94)
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. 2
E[HYZn-l " Yone! ‘Xn]

m (3.105)
"E(2n-1 = Yane) RV ¥ 2;’ [an-1 Yon+1 Ixn]
1:
Using (3.98), (3.105) reduces to
21
EE"’Zn-l ~Yon+1! lxn]
m, (3.106)

_ I \s
= IMyn-1 = Mapay ! 2 [(an 1 an+1)lxn]

where 62 [] represents the variance of [] .
From assumption (A2), the terms of the noise covariance matrix
are bounded, Hence, the terms of the covariance of the mappings

of the noise (3.66) and (3.67) are also bounded. Consequently,

m

m
20,1 i a 2
z" [(YZn—l - Y2n+1)lxn]S zlkl‘rnln1 sol< o (3.107)
i=1 {=

where the constants 0 ski<oo, i=1,2, oo, m,

From Theorem 3.3, M is differentiable, hence we can

2n+l
approximate MZn-—l and MZn +1 by the first terms of a Taylor's

series expansion about Stn

My, , ~ MG) -2 &) dc (3.108a)

My, = ME&) + %8 &) de (3.108D)
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a2 a ’
where (dcn) is an m dimensional vector (c . Cpr soor Cn)' and

where by using (3.68), we define
MER) =E b, lc, = 0. (3.109)

Recalling (3.89) and using (3.108a) and_(3.108b)

2 OM(% ) 2
M -M " ~ 12 3% N dcnll <K

- 2 y
- . Iy 10
on-1 = Myoi1 1% -6l (3.110)

1

Using (3.100), (3.106), (3.107) and (3.110) in (3.94),and taking

expectatioris of both sides

2 ~ 2 an S 2
E[B[llxn+1 - ol xn” sE[nxn - el ]- 2 E—KOE[llxn - gl }

n
(3.111)

a \2
+<—E> B[Kz 1% -oen? + UZJ
cn 1 n

By using (3.93), (3.111) reduces to

a a_\2 a_\2
~ 2 ~ 2 n 2({n n 2
E[Hx -0l -' SE[”X - gl ][1—2—-—K +K <_>J+<__ o
n+l ] n c, 0 1\c, c

(3.112)

From (3.89) we are free to take Kg = K, so that

2 ~ 2 an2 an 2 2
a - - - _n _n o
E[ﬂx rl ol }SE["X ol }[1 K1 ps ] + p (3.113)

Define E I%_ - o2 = b_, and iterate (3.113) to obtain



n a, \2 M-1a3\2_n a, \2 /a_\2
b < b, [(1-1( —l) + o [ E (-—1—> l i (1——]-<-K> +<—9->
+ ,
n+l 1i=1 lci & ¢ kmid1 Cp 1 ¢,

where (n=1, 2, ....). (3.114)
X fa \2 .
It is shown in the Appendix that Z(f) < oo implies
n=i\ 1
a_ \2
im (=2) = o, (3.115)
N-—-o0\ N
and
a
lim (C—n> =0, (3.116)
n—-oo\ n

Hence, there is a (finite) ng such that

an 2 ar1
l—Klgr: < 1—K1§> (3.117)

for n=n_,
o}

Rewriting (3.114) in view of (3.117)

1 n -1 n

a,\2 o a 2 a. 2
()17 (3 IT -2
i=1\ 1/ k=i+1 /7 j=n, ]

N=ls/a,\2 n a 2 a \2
2 i k 2] n
+0 <—-C'> | ] (1 - Kl) +0 (—c > (3.118)
i=n_\ 1/ k=i+1 k n
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This can also be written

n -1
n a, \2 9 /a, \2 n a
- 2 z i _
b4y <P, ]. ] (1 C.K’> +ol (C> K, ] ] (1 C'K1>2
(6] J:no J i=1 1 j:no )
n-1 5 n . 5
a, a a
+ 02 2 (—1'> ] | (1 ——k—Kl> ”2(_2) (3.119)
) c; ' Cy c
i=n 1/ k=i+1 n
where, from Assumptions (C) and (E),
A no-l ( aj_ 2
b Ob T—[ -L <K,< (3.120)
ng 1 ] c; l> 3

and where (since ng is fixed and 0 < n < o, and using Assumption
C(1,2) and the fact that Kl < 00) we can bound the partial product
in (3.118) to obtain

no—l

ak 2
| ‘ - —=K <K, < o, (3.121)
ck 4

k=i+1
(j- = 11 2: so ey nO—l)
Now from (3.115), for the last term of (3.119) we have

2 an 2
lim o 5 = 0, (3.122)
n-—-oo n

Using (3.117), for the first term of (3.119) we have

TT-2efen, TTH-2

b, (1—0. K1> < bno (1 -5 K (3.123)
j j=n j

o o

Next, use the inequality [711
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ij_
a. - c; Kl
(1 - EL K) se , (3.124)
j

a,
which is true for all ELKI .

] )
Using (3.120) and (3.124), along with Assumption (C1), (3.123)

can be written, in the limit, as

i a, o9 2 a,
b, l l (1 -6+K1) Sbn exp (- z -El- Kl) =0 (3.125)
© j=n_ j o j=ng 1

for ng < 00,
Following Dupac L[561, we next use Kronecker's Theorem [71, 72]
to show the convergence of the summation terms of (3.119). This

theorem is here paraphrased in terms of the notation of (3.119).

a \2
Theorem [711 If ?(—Q) is a convergent series of arbitrary

c
n=0 1
terms and if (Pl‘ Pz , «es.) denotes an arbitrary monotone

increasing sequence of positive numbers tending to + o, then the

a, \2 a a_\2
p (=) +p (2P +...+p (2
1 c1 2 c2 : n cn
- 0 (3.126)

To use this result in connection with (3,119) note, from Assumption

, ® fa_\2 SERY
(C2), that Z S < o and consequently lim Z o < o
n=1 n n—o00 i=n i
o

ratio

as well, Next, define (3.127)
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P, = 1 (3.128)
j n a '
- g2
(1-=5K,)
j=i+1 )

where i is any integer ie[l, n] and where, from (3.125)

lim Pj = 0 (3.129)

I~ 00

Also, for example,

P, = < P, (3.130)
a
l I Y
(1 - c. Kl)
i=2 1

which establishes the monotonicity of the sequence,

Next, write out terms of the last summation of (3,119)

n-1 a.\2 n a 2
i k
—_ l ‘ 1 -—K
. % . ( °k 1)
f=n_ k=i+1 (3.131)
a, \2 _=» a 2 a, +1\% _n a 2
- (o} k o k
= —_— 1-—K 1-—K
¢, Cp y + ¢, +1 Cx 1
o/ k=n_+1 o) k=n +2
o o}
n

2 a 2 a 2 a 2
+“.+Cn-—2 I l l—kK> +( n-1> (1 nK>
c c 1 c c 1
n-2/ yin-1 k n-1 n

n
a 2
and multiply and divide by /‘ I (1 - El(- K1> and apply
k

k=n +1
o

Kronecker's Theorem (3.126), with the result:
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n-1 a; \ 2 n a, 2
lim —5_—> l l 1-57K (3.132)
Ry V) k=i k

i=n
[~ 2 2 2 ]
an an +1 an +2
(o) 1 1
c N a HE n_+2
n n_+1 n_+1 n +2/ - O

=n_+1
= lim o]
n—> o 1
ﬁ T\
ck 1
L k=no+1 |
=O.

The convergence of the remaining terms ( involving K 4) of (3.119)
follows because each term is bounded by a corresponding term from
(3.131), Thus, from (3.122), (3.125) and (3.132) we conclude

\ ~ 2 _ 4. -
lim E[“Xn+1_9"] = lim bn+1 = 0 (3.133)

n—oo I 00

which is the desired mean-square convergence.

Remark 1: Our derived equations (3.98), (3.100), (3.106), and

(3.110) are essentially the same as several assumptions Kirvaitis [241]
made regarding the behavior of the estimation system, In his
dissertation, these assumptions are given by his equations (2.25),

(2.23), (2.24), and (2.22) respectively.
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Remark 2: Mean-square convergence implies convergence is
probability £88,891. This is written
lim Pr{nxn - 6l > e}= 0 (3.134)
n-—-o
An estimate ;{n with this property is terms a consistent estimate [881].
Remark 3: We can show that the parameter estimate is asymptotically

unbiased by expanding the left side of (3.133)

2
. 2 _ .. “ -~ ~
lim Eilxn - 8l = lim Ell(xn - E(xn)) - (o - E(xn)) Il
n—o0 n-»o0

lim {Ellin-E(S‘cn) 12-2E((® (X)) , (0-E(% ))+ENl6 - EX ) nz}
n—o00

lim {tr cov (?{n) + Elle - E(X )IIZ} (3.135)
N—»00 n

Now (3.,135) is composed of two non-negative terms, Hence, in
view of (3.133), both of these terms are zero when mean-square

convergence occurs, The term

0 - E(ﬁn) (3.136)

is. commonly called the bias of the estimator [1151, Clearly,
mean-square convergence implies that the estimate ?{n (of the
parameter vector ©) obtained from (3.69) is asymptotically unbiased
as n-—»ow, i,e,,
lim E(x)-6=0 (3.137)
n—-co

Remark 4: Note that no knowledge of the statistical conditional dis~

tribution functions H(y'xn - cn) and H'(yi x, + cn) was required,
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CHAPTER 4
SIMULATION STUDIES

4,1 Introduction

Simulation studies were undertaken to demonstrate the
application of stochastic approximation to the estimation of dynamic
system parameters when it could be assumed that a model which
exactly matched the form of the system was known a priori,
Reference Figure 3.4, In preparation for the studies involving the
human operator, to be reported in Chaptér 5, only the scalar output
of both model and system were used in generating the cost function,
Various levels of scalar observation noise nl(t) were introduced
and, in addition, parameter noises were also introduced in some
cases so as to study the effects on parameter estimates of the
random behavior of all of the modeled parameters, including the

sampling interval,

Simulations were performed on the IBM 360-44 digital
computer, The IBM-supplied continuous system modeling program
(CSMP), which was originally designed for the IBM-1130 digital
computer, was modified for usage on the IBM-360-44, Various
special control subroutines were developed so that the basic CSMP
program could be used iteratively in parameter estimation, All
simulations were performed by means of this special CSMP program,
For example, Subroutine 1, described in the Appendix, is the

main control program for the stochastic approximation algorithm
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and iteration procedure, It implements the K-W algorithm, (3.69).
Other special subroutines will be referred to in the sequel, Listings

for representative programs are given in the Appendix,

Parameter noises and observation noise were obtained from
digital white noise generators designed to vield numerical
sequences approximately uniformly distributed between -1 and +1.
The generators could be called through the CSMP program, The
‘basicnoise sequence generator, in Fortran notation, is typically

represented by

IR = 7243
1 IR = 259*IR
C(l) = FLOAT(IR)*2,0%*(-31.0)
GO TO 1 (4.1)

where IR in an odd integer (ordinarily specified internally in the
program) and where C(I) denotes the output of the simulation noise
sequence generator whose number is given by I, For a 32 bit
digital computer, this sequence generator will produce 230 terms
before repeating [743., Hence, for our purposes, the sequences
are random because we will deal with sequences in the order of 211

terms or less.1 In the sequel, these approximately uniformly

distributed noise generators will be represented by the equation

1Por the CSMP program, the generator of (4,1) outputs two
members of the random sequence during each integration interval
(0,01 second). The iteration interval was 10,0 seconds or less,
Hence, no more than 2000 members of the random sequence were
required during a particular iteration,
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nft) = k, [—1, +1] +k, (4.2)

where k1 is the maximum amplitude of the noise sequence numbers

and kZ is the desired mean value,

Both linear and nonlinear systems were modeled, All
notation on simulation diagrams corresponds to conventional

analog computer usage.

Generally, convergence time of the parameter estimates
depended on the level of the parameter noise present, For cases
where only zero-mean observation noise was present, convergence
of the model parameters to the true values of the system parametérs
occurred, When observation noise did not have zero mean, it was
found to induce a slight biasing of the parameter estimates
proportional to the mean value of the observation noise, This is
attributed to the fact that Assumption (&) of Chapter 3 was not
then satisfied., The presence of parameter noises (also described

by 4.2)) caused small biases to occur in parameter estimates.

A different effect on parameter estimation resulted if the
input signal to both system and model did not have zero mean
value: The convergence rate of the sampling interval estimate was
very much reduced. This was true whether or not observation noise
and/or parameter noise was present, Therefore, when dealing with
actual time history sequences, as is done in the next chapter,
care must be taken to insure that the iteration time (1) is chosen

such that the input signal has zero mean value,
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In summary, the simulation results are as follows:

a)

b)

c)

d)

e)

The sampling interval and gain of a first order linear closed
loop sampled-data system were accurately estimated in the
presence of various levels of additive observation noise.
The sampling interval, gain, and time constant of a second
order 1ineaf closed-loop sampled~data system were
accurately estimated in the presence of various levels of
additive observation noise,

Good, but less accurate, estimates of the above parameters
were obtained when randomness was introduced into each
parameter, When the ratio of the maximum random deviation
of the parameter to its constant nominal value was as high
as unity, estimation accuracies were still 90% or better,
Good estimates were also obtained in the presence of both
random parameters and additive output observation noise,
The presence of a d.c. term in the input signal had the
effect of introducing a slight bias into parameter estimates

which depended on the size of the d.c. component,

4,2 Simulation Examples

4,2.1 Example 1: Linear First Order Continuous System And Model

Referring to Figure 3,4, the continuous system and continuous

model are given by the linear differential equations
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o1

2 = Kuft) Z = 0
and ) (4.3)
3l ke 3 =0

~

where z, Z, K, K, u, and Ui are scalars. The cost function is
given by (3.58). The complete sampled-data system parameter

vector is the two dimensional vector

s
X = {KJ (4.4)
1T

and the sampled-data model parameter vector is the two dimensional

X = [5] (4.5)
T_.l

From the basic fact that for a closed~loop sampled-data

vector

system instability occurs if either, or both, T and K are too

~

large £731, the initial estimates T1 and K1 were selected so that
the closed-loop model was stable. Since all variables are scalar,
and taking W, = 1.0 in (3.58), the cost function is written
. th+T .
It Ft X R,r(t) = j(zi(t;x,r(t))+n1(t) Sz, @)%t (4.6)
t
n

The K-W procedure is given by the algorithm (3,69)

A L ST CPRL AN (4.7

where the Yoney OT€ defined by (3,64) to (3.67) with m = 2,
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and where a and c, are given by (3.60).
The driving signal consisted of either a single low frequency

sine wave or a random signal., The sinusoid was
r(ty = 20,0 sin (.63t (4.8)

where wg = .63 was chosen as representative of the low frequency
content of human operator test signals [27]), The iteration interval

was chosen such that r{t) would have mean value of zero,
The random signal was given by
rn(t) = no(t) + ko (4.9)

where kO is a constant selected, in general, to remove the
inherent bias of no(t) , and no(t) is the output of a second order
filter

K 2

F(s) = gwc (4.10)

s” + 2(.>ch + (wc)z

when it is driven by the uniformly distributed zero mean white noise
sequence generator of (4,2), The gain Kf was chosen such that
the relative energy of the signal rn(t) would be the same as that

of r(t), i.e., so that over the particular iteration interval T

T

ﬁZO sin (.63t))zdt = ﬁrn(t))zdt (4.11)
0 0

In (4.10), the cutoff frequence wcz = ,63 was chosen to agree

with the approximate bandpass of the drive signal used with the
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human operator experiments [271 which will bereported in Chapter 5.
In (4.9), the value of k0 depends on the iteration interval T+ and

is given by

kg =fn0(t) dt (4.12)
0

Forr = 4,0 seconds, k, ~ 10.8 for the filter of (4,10), when

0
= ,49 and wcz = ,63, However, in the following studies, we will
not always use this value of ko; rather, we will study the effect on
parameter estimates due to using driving signaIs which have

varying levels of bias, The entire low-pass noise filter set-up

is shown in Figure 4.1a.

In this simulation a random component of the system gain

was also generated by means of the set-up shown in Figure 4.1b.

Figure 4.3 shows the simulation results for the cases where
(zero-mean) observation noise (nl(t) = [—i, +1]) is absent in one
case and present in the other. When observation noise of this
size was present, it did not induce any apparent bias in parameter

estimates.,

Figure 4.4 shows the effect of adding a large uniformly
distributed white noise component to the gain parameter K so that

the resultant system gain was

= [
K, = 5.0+5.00-1, 41 |. (4.13)

The zero-mean observation noise is [-1, +1] and the sinusoidal

drive to the estimator is given by (4.8). Clearly, very little
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Figure 4.2b

\ \ Adjust T, K. 8

Simulation Set-Up For Estimating Noisy Gain and
Time Constant. Second Order System and Model.
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biasing of parameter estimates is induced in this case by the

combination of large random gain component and small observation

noise,

Figure 4.5 is for noise-free observations and parameters,
However, in this case the random drive function given by (4.9) is
used with ko chosen such that rn(t) has zero-mean over the

iteration interval (T = 4,0 seconds)., Thatis, k, = -10.8394,

0
Again, there is no resulting bias in parameter estimates,

Figure 4,6 shows estimation results for the same drive function
but for the case c\>f noisy observations and noisy gain. Observation
noise (4.2) was used with and without a bias term (kz) . In the
former case

n ® = 1.0 [-1, +1} +1.0 (4.14)

The estimation result is given by the dot sequence, Asymptotic
parameter estimates are: T = ,225, K= 5,41, In the latter case,

the observation noise is

n,(® = 1.0 [—1, +1] (4.15)

The estimation result is given by the cross sequence, with final
values of parameter estimates: T = ,236, K=5,02,. In both

cases, the noisy gain was given by

.
K, = 5.0+0.5 [—1, +1J (4.16)

Clearly, the estimation errors are larger when the observation noise

is biased than when it is not,
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Figure 4.7 illustrates the effect of using a driving signal (4,9)
with non-zero mean value, Observation noise and parameter noise

are zero, Referring to Figure 4.5 for comparison, the main result
is to reduce the convergence rate of T, Additi%nally, the

asymptotic value of T is now biased: T = .23, However, neither

the final value of K nor its convergence rate were affected

"~

substantially, Hence, we concludeinthis case that only T is

particularly sensitive to bias of the driving signal,

4,2.2 Example 2: Nonlinear First Order Continuous System And

Model

Again, referring to the nomenclature of Figure 3.4, the
continuous system and model are described by the nonlinear

differential equations

1= K(u(t))s, z}) =0 (4,17)
and
3o K@) 3, 2% =0 (4.18)

where z, 2, u, and U are scalars, The cost function of (3.58)
is again used, The sampled-data system parameter vector and

model parameter vectors are

[k
x = T} (4.19)

and

2= f} (4.20)
T

respectively.
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The drive signal is the random function given by (4.9).
Figure 4.2a is a schematic of this simulation., Any, or all, of the
noises shown there could be used in combination to furnish a very

complete simulation of a nonlinear system with noisy parameters

and observations,

Figure 4.8 gives estimation results for Example 2 for the
case where the random drive signal (4.9) has zero mean value, the
parameters are noise-free, and where the observations are both
noise~free and noisy. There is a slight bias in the parameter

estimates for the latter case.

Figure 4.9 shows estimation results for the case where the
observation noise is zero and the random drive signal does not have
zero mean value over the iteration interval, A slight bias is

induced in the estimate of T: T ~ ,226 (10% error).

Figure 4.10 shows estimation results where the (zero-mean)

observation noise is ten times larger than in Example 1, so that
n, () = 10 [—1, +1] (4.21)

The gain is also noisy with maximum excursion of random component

equal to nominal gain, i.e.,

K

]

0.025 + 0.025 [—1, +1] (4.22)

The random drive signal has been bias corrected. Despite the fact
that the observation noise is larger than in previous experiments,

reference, for example, Figure 4.8, and considering the presence
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of the large random gain component, a comparison of Figure 4.10 to

Figure 4.8 indicates only a slight difference in parameter estimates,

Figure 4,11 is for the same set of system conditions as
Figure 4,10 with the addition of a large white uniformly distributed
zero-mean random component to the syst_em sampling interval by
means of subroutine Sub 2 (described in the Appendix), The

random parameters are

T = 0,25 + 0.25[—1, +1] ' (4.23)
and

K = 0,025 + 0,025 [—1, +1] . (4.24)
The observation noise is also large:
n @M = 10 [—1, +). (4.25)

From a comparison of Figure 4.11 and Figure 4,10 it is clear that
the addition of the random sampling component induced some error
into estimation of the sampling interval. An experiment, not
reportéd in detail here, indicated that the random component of the
sampling interval had a bias of approximately ~0,015 when the
mean of (4.23) was checked for T =4,0 seconds,., Hence the mean
value of the system sampling (over the 4,0 second iteration
interval) was: T = 0,235, The estimates E‘ are asymptotic to

-~

T =~ 0,262; hence the bias errorin T is in the order of 10%.

4.2.3 Example 3: Second Order Linear Continuous System and Model

Again, referring to Figure 3.4, the system equations are
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sl = ;2 z% =0 (4.26)
52 = -pz% +Kpu(), zzo =0 (4.27)

and the model equations correspond, Here P is the time constant
and Kp is the effective gain, The foregoing remarks concerning

cost function apply here as well, The system model vector is

KB
X = B (4.28)
T
The model parameter vector is
Kg
%= p (4.29)
T

Figure 4.2b shows a schematic of the simulation. In some
simulations, random components were added to both Kf andf,

In contrast to Example 2, T was always deterministic,

Figure 4,12 shows estimation results for the completely
noise~free case, Note in comparison to the first~order systems
of Examples 1 and 2, that the increased system complexity induced
a slower convergence rate of the estimates, However, the

asymptotic values are unbiased,

Figure 4.13 shows the estimation results for the noisy
parameter and noise observation case, The noisy system parameters

are
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K = 8,0 +0.8 [—1, +1] (4,30)
and

B=2.0+0.2 [—1, +1} (4.31)

The observation noise is [—1, +1] . In this case a slight bias was
induced in the asymptotic values of parameter estimates and is
imputed to the presence of the moderately large random components

of KB and B.

4.3 Conclusions From Simulation Studies

The simulations have demonstrated the convergence properties
which were analytically predicted in Chapter 3, i.e., that unbiased
estimates are obtained when the observation noise has zero mean-
value and is uncorrelated with both system and model outputs,
Parameter estimate biases are introduced by the presence of a
non-zero mean in the observation noise, and the estimation errors

are proportional to the noise bias,

When parameter noise is introduced, even when it is relatively
large, the effect on obtaining estimates of the mean value of the
parameter is quite small, Therefore, through these simulation
studies we may proceed with some hope of obtaining reliable
estimates of human operator parameters in view of the probably

stochastic nature of the human operator's parameters,

The effect of the bias in the input signal is to induce a very

slow convergence rate in the estimate T of the sampling interval T,
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However, the convergence rate of other parameters is not seriously
affected, The asymptotic estimate T of sampling interval T was,

however, not seriously biased.
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CHAPTER 5
RESULTS OF MODELING EXPERIMENTS USING ACTUAL PLANT DATA

5.1 Introduction

In this chapter we will apply the Kiefer-Wolfowitz stochastic
approximation procedure described in Chapter 3 and simulated in Chap~
ter 4 to the problem of estimating the parameters of a plant. Actual
operating data of plant input and plant output are used, The particular
problem chosen is concerned with estimating the parameters of a human
operator model from discretized data obtained from a control situation
involving a human operator while he is operating a dynamic load in the
closed~loop feedback configuration of Figure 5.1.

Prior estimates of both the model form and model parameters of
the human operator have bee‘n given by several authors: McRuer
et all27) used the spectral analysis approach and developed linear
models., AdamsI75] and Bekey et al [76]1 used continuous parameter
tracking methods for finding the parameters of a linear second order
model. Elkind [77] applied regression analysis using orthonormal
filters and obtained linear models. Brainin [78]lestimated statistical
moments of the parameters of a simple linear model of the human |
operatqr by analog computer solution of the Fokker~Planck partial
differential equations for the moments when the random parameter
component was assumed to be white gaussian, Holmes [25]used
stochastic approximation to solve for a Volterra expansion representa-

tion of the generally nonlinear human operator,
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Figure 5.1: Configuration of the Experimental Determination of the
Dynamic Characteristics of the S.T.I. Human Operator.
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In particular the models and parameter estimates given by
McRuer will be used here as a basis for determining the relative advan-
tages of. stochastic approximation in comparison with some of the other
parameter estimation models. The parameters which are to be estimated
in this study depend on the particular model chosen, Candidate
models include: (1) sampler, data-hold, and gain, (2) transport delay
and gain, (3) sampler, data-hold, and gain, (4) transport delay, gain,
and lead-lag filter,

Data from actual human operator experiments were obtained
from Systems Technology, Incorporated, Hawthorne, California. Data
for the four varlables shown in Figure 5.1 were supplied in discretized

form for coincident sampling time points spaced 0.05 second apart.

5.2 System Technology Incorporated Test Data and Models

The data used for our human operator modeling studies were
obtained from Systems Technology, Incorporated (S.T.I.). The results
of their human operator experiments are summarized in Table 5.1.
Table 5.2 furnishes the particular form of human operator model (Yp)
derived by Systems Technology, Incorporated to correspond to a
particular controlled load (YC) . The tables are to be used together to
provide a complete description of a model, For example, for the

controlled load dynamics 0.1/s, the first approximation model is

L 27s
P D ITIs + 1

TS = 31e7 . (5.1)



157

Param;ters of Punici;ns of
S.T.I. Yo (s;c) 2 £

Run Number TL(sec) TI(sec) wC=KpKC Om(°)*

671129-09 | 0.1/s 0.270 | o© 0 3.1 a4

-01 | 1/s(s+2) 0.264 | 0.5 0 4.2 24

03 | 1/s(s+4) 0.250 | 0.25 0 4.2 6

-05 | 0.1/s2 0.333 | >1 0 1.5 40

-07 | 0.1/s(s+1) | 0.384 1 0 2.8 12

~11 | 1782 0.330 | >1. 0 4.0 11

-15 | 1/s% 0.345| >1 0 3.3 20

0

*crossover phase when Y,ch =1,

Table 5,1 S,T.I. Experiments And Results

Controlled Load Human Operator
Dynamics (First Approximation Model)
() Y
EQ < (TLs+1)e
s P (TIs+1)
K
c 1, -7s
s{s+p) Kp (s+ TL)e
KC 1 TS
— K (s+=)e”
s2 p TL

Table 5.2 Correspondence Between Loads and Human Operator Models
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S.T.I, has derived four models in order of increasing accuracy: the
crossover model, the first approximation model, the second approxi-
mation model, and the precision model. They are tabulated in
Reference 27. It should be noted that great care was exercised by the
experimenters to insure that the input signal was random appearing and

Gaussian in character,

5.3 Other Current Models

According to other recent work 26 ,_28], the human operator is
currently thought to exhibit an ability to adapt to sudden changes in
almost any portion of the overall controlled system. However, dis-
cussion of models with such adaptation is unnecessary from our point
of view: we confine our investigation to the estimation of sampling
intervals and use data from the human operator experiments because it
is available and because it presents an important problem in modeling
a noisy, nonlinear system where there is reason to suspect that

sampling may occur,

5.4 Procedure For Modeling Plant Data By Stochastic Approximation

The data for two of the four signal points of the human operator
compensatory tracking problem of Figure 5.1 were used in the modeling
studies, The studies were restricted to using the data for the load
Yc =0.1/s. In orcier that the results of this study realistically repre-
sent the most difficult modeling situation, only the scalar input and

scalar output variables i(kTq) and m(kTq) were used., The S.T.I.
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notation will be used when we are dealing with data derived from the
S.T.I, experiments,

Details of the various digital programs used in the modeling
study are given in the Appendix, This section is limited to explaining
the various modeling procedures,

Figure 5.1 shows a schematic diagram applicable to the
various modéling studies. A special CSMP program module replacing
module CSMM was written to read data cards as well as to perform the

functions of module CSMM,

5.4.1 Special Subroutines

Because the data i(kTq) and m(kTq) were in discrete form,
linear interpolation was used to obtain additional data points. The
new sequences are defined here as i(t) and m(t). This was performed
by a special CSMP subroutine. Special subroutines were also
necessary for iterative control of the stochastic approximation proce-
dure and also to generate special functions, These subroutines are
briefly summarized as follows:

a) Subroutine Sub 1: This is the basic subroutine which
performs both the modeling and also the stochastic approxi-
mation iterative calculations,

b) Subroutine Sub 2: This subroutine performs the linear
interpolation of the data i(kTq) and m(kTq) and outputs i(t)
and m(t). Linear interpolation was performed twice in each
numerical integration interval, and the integration inter\.rals

were not larger than 0.01 second.
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sT

c) Subroutine Sub 3: This generates the transport lag e ~as

required in the modeling.

5.4.2 Study Procedures

The sequence of experiments was directed at obtaining a

simple optimal model of the unknown huinan operator from the candidate

models of Table 5.3 . Steps in the sequence were as follows:

(1)

(2)

(3

(4)

Use the S.T,I. first order approximation model and record

the cost function obtained at the end of an iteration

" interval. Use this number as a standard of comparison for

evaluating the relative merit of other human operator
models,

Adjust the parameters T and p by stochastic approximation

to determine whether improvement in the model, as

measured by the cost function,

] =fT'( € 2 at (5.2)
could be ac(ilieved.
Represent the human operator by the combination of gain 4
and sampler and zero-order data hold of period ".f‘ Adjust
t and K by stochastic approximation.,
Add linear lead-lag compensation s/(s+f) to the sampled-
data model of (3). Adjust the parameters T, K, and ﬁ by

stochastic approximation.
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Model of Human Operator Optimal Parameters Minimum Cost
Controller ‘ Imin
(1) ipe-.27s =?<pe-Ts T = .27 second 99,634
(see note 1) l(p =31.0
(2) K o™™® ;Tzr-f .2351 94,105
{see note 2) P 28.613
(3 _~_| =1 T=.,2577 101,114
. 2 %.0.H[ K - 5607
(see note 3)
CYR = T = .2604 89,075
. § Z.0.H, Ks K = 26.40
s+p p=0.29
(see note 4)
(5) a""’(ﬁ%) T =.2873 62,034
s+ K =31.369
(see note 5) P =0.5759

Note 11 This is the 8,T.I. Model,

Note 2: This is 8.T.I. Model after parameter adjustment by stochastic
approximation,

Note 3: This is the sampled-data model.
zero order data hold.

The 2.0, ,H, refers to a

Note 43 This is the sampled~data model with phase lead compensation.
Note 5: This is the S.T.I. Model improved by phase lead.

Note 6: Parameter values for models 2 through 5 were derived by
means of stochastic approximation,

Table 5.3 A Comparlson of Various Models of the Human
Operator in the Tracking Task of Figure 5.1
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(5) Determine the effect of adding the lead-lag compensator
of (4) to the S,T.I. model. Adjust the parameters T, Ep
and 5 by stochastic approximation.

It will be noted that the above experiments are quite simple,
However, this does not limit the generality of the method. The object
here is to illustrate the application of stochastic approximation to the
problem of estimating the parameters of a plant from actual operating
data, If desired, the order and complexity of the candidate model
could be increased as long as the cost function reflected a corres-
ponding decrease after the application of the stochastic adjustment

techniques,

5.4.3 Zero-Mean Compensation Of Input Signal

The adverse effect of a non-zero mean value of input signal on
the convergence rate and bias of the estimate of the sampling interval
was noted in Chapter 4, In order to obtain an input signal i(t) with
mean value substantially close to zero, the running average of the
sequence i(kTq) was obtained for each k=1,2,,... Then the smallest
k was selected for which the running average was substantially zero.
This was termed ko . The iteration interval T, was then fixed at
T=k Ty

For the data of Table 5.1, and for Y = 0.1/s, 71 =29.4
seconds. Naturally, the particular 1(kTq) and m(kTq) sequences were
fixed once T; was chosen. These same sequences were then used for

each iteration of the adjustment procedure. (The original S.T.I. data

traces were 100 seconds in duration.)
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5.4.4 Initial Conditions Of The Model

The printout of the selected time sequence m(kTq) from the
card data indicated that m(0) = 42.0. Both 210 = 42.0 as well as

-~

Zy0 = (0 were tried as model initial conditions. The cost function was

1
about 5% lower when the former was used: hence, this value was used
for all modeling experiments. Actually, the initial conditions could
also have been included in the parameter vector of the model.

However, this would have substantially increased the computation

time requirements for sequence convergence.

5.5 Results of Modeling Studies

Table 5.3 shows the various models of the human operator
controller used in this sequence of experiments., The optimal values
of the parameters are indiCated, along with the resulting value of the
cost function at the end of the particular stochastic approximation
iterative search sequence. The cos;: function, Eq. (5.2), measures
the fit of the model output to the tracking data. Specifically, the cost
function was the integral squared error, where the error is between
noisy system and model and 7j is the iteration interval. The adequacy
of the different models can be compared by examining the values of

the cost function for a sufficiently large number of data samples.

5.5.1 Discussion Of The Modeling Results

Figure 5.2 shows the results of stochastic approximation
adjustment of the parameters T and Kp of the S.T,I. transport lagmodel.

Note that relatively stationary parametef values are achieved after
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only five iterations. The initial estimate of the parameter ip was
purposely chosen as very small so that large transient corrections
would be induced in the estimation sequence for both T and ﬁp and
thereby expose local minima in the cost function if the local minima
existed, We conclude that local minima do not exist for the set of
parameter vectors here calculated because the set of parameters which
minimized the cost function has minimizing values which are close to
those of the S.T.I. model., Furthermore, the cost function is smaller
than that realized with the S.T.I. model for the data samples utilized.

Figure 5.3 shows the parameter estimates obtained when using
the sampled-data model of the human operator controller. Qualitatively,
the model appears to be poorer than the transport lag model as judged
by both the larger value of the minimum cost function and the rougher
appearance of the sequential parameter estimates., The minimum cost
function is about 7% larger than that obtained with the transport lag
model of Figure 5.2,

Figure 5,4 shows parameter estimates for the sampled-data
model with first order linear lead-lag compensation. The sequence of
the sequential estimates of sampling interval is smoother than that of
Figure 5.3. The cost function is also about 6% lower than for the
optimal transport lag model of Figure 5.2,

| Finally, Figure 5.5 shows the transport lag model with lead-lag
compensation, Clearly, this is a much better approximation thah
either of the sampled-data models as evidenced by the smooth

iteration sequences and the fact that the cost function is about 30%
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smaller than for the better of the sampled~data models. Compared
with the original S.T.I., model, the cost function is about 37%

smaller, again, for the particular data samples here chosen.

5.6 Conclusions

Stochastic approximation has been applied successfully to
problems in the modeling and estimation of parameters in a system of
unknown order, unknown nonlinearities, and with possibly random
parameters and with possibly noisy observations of system output.
System input was a random function. In all cases linear models were
used. These included both sampled-data models and transport lag
models. Convergence of the parameter estimates occurred in every
modeling situation, although convergence was smoother and quicker
with the transport lag models than with the sampled-data models,
Also, for models of the same complexity, the transport lag model
yielded a smaller value of cost function than the sampled-data model,

So far as is known, this is the first study where estimates of
the various parameters of linear transfer function models of unknown
systems have been obtained by stochastic approximation from off-line
operating data, By contrast, Sakrison obtained estimates of linear
gains of nonlinear transfer functions comprising an optimal prediction
filter, Holmes used off-line data to obtain an optimal Volterra series
nonlinear representation of the human operator. Both used stochastic

approximation to obtain their parameter estimates,



170

In our work, no difficulty in obtaining convergence was
experienced when the complex human operator controller was
represented by the relatively simple models, Furthermore , the optimal
estimates of the parameters : and ?(p, estimated with the simple
transport lag model, changed by only 24% and 8% respectively when

the compensated transport lag model was used instead of the simple

transport lag model,

From the results of the study it is concluded that the human
operator controller is better represented by the transport lag model,
with or without linear lead-lag compensation, than it is by a

comparable sampled-data model.

While the results we have here obtained suggest that
stochastic approximation may lead to a better model for the human
operator‘ than heretofore obtained by conventional spectral analysis
methods, we cannot firm up such a conclusion until a sufficient
amount of data has been used with the method. In this study, the
data traces i(k’I'q) and m(kTq) which we used for modeling were
of 29.4 seconds duration, and were chosen from the S,T.I.

240 second duration time traces [27]. The parameters of the S,T.I,
model were based on data from the entire time interval, while

we used a little over one~tenth of the data., It is quite possible
that the parameters that S,T.I, obtained represent an average
model, while our parameters represent the model for the particular
subset of data which we used, Clearly, by applying stochastic

approximation to time slices of the original data, e.g., 24 second
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subintervals of the original 240 second time trace, it should be
possible to estimate the temporal behavior of time-varying

parameters,

5.7 Recommendations For Subsequent Investigations

In Chapter 3 we proved mean-square convergence of parameter
estimates of sampled~data systems for the estimation configuration
of Figure 3.4 and for the stated restrictions on observation noise
and dynamics of the con\tinuous system, The parameters of the
continuous sy stem were assumed to be fixed, It is desirable to
extend this work to the cases where the continuous system has
either slowly~varying parameters, or random parameters, or both, In
connection with the former, Dupac [£104] has recently proved
mean-square convergence'of the estimates of the parameter which
minimizes a regression function when that parameter varies by
the multiplier (1+1/n). Thus, the K-W estimator (3.69) would

then be given by

a
s = % Y -
Xn+1 = (1 + l/n)xn + cn (an_l Y2n+1) (5.3)

An approach to the analysis of conditions for the convergence of
estimates obtained by stochastic approximation when a parameter

has additive noise has been taken by de Figueiredo and Dyer [113].

In addition, work is needed to vield both insight and

possibly some sort of convergence result for the general modeling
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case where the model is of lower order than the unknown sy stem,

Some work along this line has recently been reported by Mork [114].
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APPENDIX I
ITERATIVE STEEP DESCENT METHODS

The various expressions for the K matrix of Table 2,1 have
a common basis, Suppose it is desired to minimize a scalar function
of several parameters say

1@ = 1&L, %%, ..., 89 (1)

where % is a k dimensional parameter vector, with components as
indicated. Assuming that the third order partials exist and are
bounded, ] can be expanded in the Taylor series (to the second

b iteration of the parameter vector %, For

order term) about the jt
an increment AS‘{J. in the parameter vector, defined as the vector
difference between the (j+1)th and the jth iterations of the parameter
vector, we have

%, = Xj+1 - ‘kj (2)

The expansion of J( ) about the parameter vector 3‘{}. is then
7
/
- - -~ ' = -~ ~ ~ + S
I(x]. +1) I(xj) +[Vxl(xj)] a% + 1/2(ij) HJij O(ij) (3)

where o(A%J.) vanishes when "AS‘cjll goes to zero, Vﬁl(ij) indicates
the gradient of ] with respect to the vector X evaluated at X,, and

j

I—Ij is the matrix
a
H, = v§[<v§r(xj» ] (@

Note that Hj depends on the vectodr ?cj, hence its components may

be changed after each iteration.
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The Newton-Raphson technique requires that we select the

parameter perturb.ation vector which minimizes the right hand side of
(3) with respect to a%. This is found by setting the gradient of (3)

with respecttoA?;j to zero, so that
0=9 {(ij) v I&) +1/20a%, JAXJ.]
This results in

A% = -H j’l[v;{](szj)] (6)

Hence, Kj in (2.30) is simply H].-l . Note, this is analogous, in
the scalar case, to expanding the first derivative in a Taylor series

and solving for the iteration which renders it zero,

Sometimes, instead of the above approach, a more limited
Newton-Raphson approach is used. This is done as follows:

Take only terms of the linear term in A?cj in (3):
. /
I(Xjﬂ) = I(xj) +{ij] V;{I(xj) (7)

Choosing A?(J. such that movement is opposite to the gradient of J
yields

/_\.‘;‘cj = -k 1V§I(§j) (8)

where kl is a scalar., Substituting in (7)

18y, = 16 -k, [ [v6)) ©
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Setting (9) to zero vields k1

-J(R)
= —Ll— (10)

k
1 2
uv,k](& j It

Substituting into €8) give the incremental parameter vector

“JX ) VaJ(R )
AR, -_—._._L__Z_fl_ (11)

j 1vRI &) 112

JIX)
. , L] C :
Hence, Kj in (2.30) is 5 This is however, not included
IIV;{I(X].) i

in Table 2,1 for the following reasons: This form of the Newton-
Raphson method unfortunately yields an incremental parameter vector
which becomes infinite if the criterion function J does not go to
zero when the gradient V;\{] goes to zero, Such is not the case with

(6). Hence, (11), by itself, is not much used in gradient work

although the optimum gradient method does use it [901.

The steep descent method simply uses a matrix of constant

positive multipliers for the K matrix, It is not necessarily updated.

From (2) we have

%41 = 521. +A;?j . (2)
Take

AxJ = —kIVS.{ ](xj) (12)

where k is a positive constant and I is the kxk unit matrix,



176
Substituting into (2) yields

R4 = ﬁj - kIv;{I(?;j) (13)

Hence, KJ. in (2.30) is simply kI.

This method, though simple, will not converge if k is chosen
too large. On the other hand if k is small enough for convergence
then more computer time may be used than with the Newton-Raphson

method.,

The Gauss-Newton method will be illustrated after the

application of the Newton-Raphson method to the scalar integral

cost function

T
J = /;z(t; %)at (14)
0
where e is a scalar function of time and is dependent on the

parameter vector ?cj .

The Newton-Raphson method applied to (14) yields the

correction parameter vector

AR, 1
j

]

.
"‘1 2 . 5
_Hi ]O-V%e (t; xj) dt

-ZHj-]'[(V;{e’(t; ?(j))e(t; ?(j) dt (15)



177

But from (4) , we wrote Hj as
Hy = vy [io7®)) ] (@

Applying (4) to (14) and writing e(t; 52].) concisely

TZ - /
Hj = Vs (Vg fe (t: xj) dt)

0

.
_ y /
2 [[svatse)”) + @@ Jar o
0
The use of (16) guarantees quadratic convergence of the

gradient technique when J has a regular minimum [911],

The Gauss~-Newton method uses the development leading to
(16) but simplifies the compufation of H by omitting the first
term in the integrand [91, 921, The multiplying matrix is then

T

/
j= vai(e) (V%(e)) dt (17)
0
As shown in Chapter 2, the gradient terms in the integrand of (17)
are simply the sensitivity functions as discussed in connection

with (2.27) and (2.51). Hence, the gain matrix from (15) is

(18)

Using (17)
T "1
Kj = [2 ﬁ;{(e(’c; ij))(vg(e(t; ?{j)))/ dt} (19)
0
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If we consider a sampled~data system with sampling of period T;

then t is replaced by kZT' where kz€ [0, 1,2, veede

T -1

K, = Irzjovﬁ(e(kz%; ?{j))(vg{(e(kzi‘;?‘:j)))/ dt:]
-1

= [2 foa (kZE)(a(kZE))’ dt:l (20)

where of « ) is the vector solution of the sensitivity difference

equation, (See Chapter 2.)

Finally, if we reduce K]. by means of a positive constant k,

we obtain the modified Gauss-Newton method; for which

T ~1
Kj = k[Z'[o"(sz) ((Tsz)) dt] . (21)

When (20) is used, the gradient procedure may not converge [911.
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APPENDIX II
THE EQUATION FOR THE DERIVATIVE OF THE DRIVING FUNCTION

We desire the expression for the term dr d.l;T which appears

as one of the driving function_s in the sampling interval sensitivity
difference equations of Chapter 2. The analysis is restricted to
sinusoidal (or cosinusoidal) inputs, but, even so, the results are
quite general since any continuous input can be constructed from a
Fourier series of sines and cosines, Additionally, a simple sine or
cosine drive is still a sa;cisfactory input test drive signal since it is
sampled and held in each loop., Consequently, a succession of step
functions is imposed on both of the continuous systems, The result
is that all modes of each of the continuous systems are excited by

the infinite frequency content of these signals.
The driving signal to each closed loop system is
r(t) = A sin ot. (1)
At the sampling instant t = kZT

r(nt) = A sin kat (2)

Likewise, the continuous derivative of the driving signal (at t = kzi? is

¥t) = A wcoswk T. (3)

2
In deriving the sensitivity difference equation in T in Chapter 2,
we were interested in the inpqt signal to, and the output signal

from the continuous dynamics., Consequently, it was convenient

to express these signals at the sampling instants t = kZT by means
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of a difference equations, The input signal to each continuous
system was obtained from a data hold. Therefore, the reconstructed

signal obtained from the (zero-order) hold can be written
rk,D) = 2 sinw(k,-DT (4)
and the reconstructed derivative of the output of the data hold is

dr(kz"f.') A
—t— = A (kz-—l) w Cos w(kz—l)T (5)
daT

Assuming k, > 5, (5) becomes

2
dr(kz‘i')

—_— ™~ Ak, wcos wk

T. (6)

This can also be written

ar(k, T,

—;'f—— P9 % {t X (t)] . (7)
t=k2T

The desired quantity for the purpose of generating sensitivity

difference equations appears on the left side of (7)., The right side

of (7) shows how this derivative is constructed from the derivative

of the input driving signals (1),
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APPENDIX III
PROPERTIES OF SEQUENCES

The following properties of series [70] are used in the proof

of mean-square convergence of the Kiefer-Wolfowitz procedure:
o0
() I z b <, then lim b_ =0, Note that this is only a

n—00
n=1 -

necessary condition,

N-1
Proof: Let z b =Sy and z b =Sy .
n=1

Then b,., =S,, =S

N =5y~ Sy.p  But lim Zb-S<oo

“N— 0
n=1
N-1
and hence lim 2 b =8
N—ow n
n=1

Therefore, lim bN = lim
N-—+w N—w

N-
b_ Z s=0.

[\/]z

1

:3
i

o0
(2) Forn=1, 2, 3, ..., the p series z -1; has the properties

n=1 1
o0
that is converges (diverges) as p> 1, (p =1),i.e., z —15 <
n
n=1

00
if p >1, and z -Lp—oo if p=< 1.
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Problem: Using the above properties, determine the range of Y

for which the following are true

w 2 o0 a

2(___n> < o, (--n>=oo, lim ¢_ =0, lim a_=0 1)
c. }, c n n
n S\n

n=1" n—co n—-o0

where we assume an=A/n, n=1,2,3,4, ..., and c, = C/nY,
and where A, C >0,

Solution: From the convergent p series, we have

00 a 2 9
n A 1 ) '
= C -3 <o if 2(1-y) >1, i.e., when
z(cn> Z<C> ;2(1-Y)

n=1

o0 a o0
n_ N\ A_Ll_ _ A
Y<1/2. Also, 2 c_ = z Cn'(l-y) =00 when c 0 and
n=1

n=1

when 1-Y=<1,i,e.,, whenY = 0, In addition, if c, = C/nY,

then lim C/nY= 0 if Y>0, Also, note from (1) that

n-—o
0 a_ 2 a 2
z S < oo implies lim -éﬂ = 0 which also implies
n=1\ " N—oc0} 1N
lim (an/cn) =0,
n-—o
0 2 ©
Summary: The desired properties Z(-C—ll> , E(EE>'
n n
n=1 n=1

lim a, = 0, lim c, = 0, will obtain when 0 < Y < 1/2.
n-—00 1 —o0
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"APPENDIX 1V

LISTINGS OF SIMULATION PROGRAMS

This appendix presents an example of the special CSMP computer
subroutines and program used in the simulations of Chapter 4. It was
selected because it illustrates all aspects of the simulation effort.
Specifically, the listing is for the sampled-data feedback system with
nonlinear first-order continuous dynamic system given by Example 2
of Chapter 4. Both the sampling interval T and the gain K have
random components with excursions set equal to the nominal values.
Simulation results for this set of listings are given in Figure 4.11,
Also included are several iterations of the parameter vector of the

’

sampled-data model: % = ("i‘,?(). The nominal wvalues of the para-

meter vector of the sampled-data system are: T =0.235, K =0,025,
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FORTRAN 1V
00Dl

aaneono

MODEL 44 PS VERSION 3, LEVEL I  DATE 68353 USC/SSL pPaGt

"

o W N

2

-3

21

2

~

©

SUBRUUT INE SuB1
THIS SUBRUUTINE CALCULATES THE 1TERATIVE KIEFER WULFOWITZ
STUCHASTIC APPROXIMATIUN ALGORITHM.
THE SYSTEM CONSIDERED HAS A CUBIC FUNCTION FOLLOWED -BY AN
INTEGRATUR WITH AN UNKNODWN GAIN. THE SAMPLING INTERVAL IS ALSU
UNKNOWN. BOTH THE GAIN AND THE SAMPLING INTERVAL HAVE NOISY
COMPONENTS - THE SAMPLING INTERVAL NUISE IS GENERATED BY SuB2.
WHICH FOLLOWS THIS SUBROUTINE.

REAL REALS{395%5)

INTEGER INTS(5AT)

DIMENSTON CU76)4PARLIT5) MTRX2{T5)

DIMENSION DD{100)

COMMUN REALSy INTS

COMMON DD

EQUIVALENCE (INTS{76), MYIRX2{1)), {REALS(2), C{1))

EQUIVALENCE (INTS5(376), 1 1y {REALSU79}, UTS2 )

EQUIVALENCE (REALS(H1), PARL(1))

DIMENSION MTRX3{75)s PAR2175)s PAR3{75), MTRX4(75)

EQUIVALENCE (INTS{151)y MTRX3{1))y(INTS{226)MTRX4(1}}

EQUIVALENCE (REALS{156)s PAR2{1}) ,{REALS{231},PAR3(1))

EQUIVALENCE {INTSU52%) , TESTS

EQUIVALENCE (OD(1),YMLI}y (DD{2)9YPLI 2 (LDI3)4YM2) ¢ (UDI4),¥P2)

INTEGER TESTS

IFLC1T6)0114142

PARL(1)=DT52/2.0

Cl11=1.0

RETURN

PARL{1}=PAR1{1)+DTS2
IFIPARLUEI-PAR2L1})392,1

Cil)=0.0

TF{CIT6)~4.00144545

TESTS=6

JEMTRX3 (1}

CN1=0.01*(PARZ{JI*%(=,166))

CN2®0 . 01*CN)

N=PAR3(1)

G0 TO {20y 21,4 22, 234 24),N
PARZ{I) 1S THE SAMPLING INTERVAL

PARZ{1)=PAR2(1)~CNL

PAR3(1152.0

RETURN

JEMTRX2({1)

YMIxCiJ}

J=MTRX4{1)

PAR2(1)}=PAR2II) .+ 2.0%CN1

PAR3{1)=3,0

RETURN

JEMTRX2(1)

YP1sCid)

PAR2{1)=PAR2{1)-CN1

JENTRX&( 1)
PAR2{J) 1S THE GAIN PARAMETER

PAR2{J)=PAR2{J)~CN2

PAR3(1)=4.0

RETURN

SEMTRX2{T}

YM2=CiJ)

JEMTRX4 (1)
PARZ(JI=PAR2{J)+2.0%CN2
PAR3{1)=5.0

RETURN

JMTRX24T1

Yp2sCid)

J=MTRX4( 1}

PAR2 J)=PARZ(J}=CN2

P2=PAR2(1)

P3=PAR2{J)

JJ=MTRX3L])

AN=Q 4000005/ PAR2(J3)

AL={AN/CN1)

Dl=ALS{YM1-YPL)

D2=AL*{YM2-YP2)

Plwil

P4=D2

IF(ABS(D1}.1LE.0.1)60 YO 9
D1=0,1%017ABS (D1}

CONT INUE
IF({PARZ(I}+D1},LE,0.015)60 TO 10
PAR2{1)=PARZ(1)+D]

CONTINUE

1F{ABS{D2) LE.0,025)6G0 TO 11
02=0.01%D2/ABS5(D2)

CONT INUE
IF{PARZ{J14D21.LEL0.,002)G0 TO 12
PAR2{J)=PAR2(J)+D2

CONTINUE

PAR3{1)=1.0

PARZ{JS}=PARZ(SJI41.0
WRITE{3,30)PAR2{JJ)y YMLls YPLl: P1,Dly P2y PAR2{I}
WRITE{3430)PAR2(JJ) s YM2, YP2y P4, D2s P3, PAR2(J)
RETURN

FORMATAL1HLy TFL7.4)

END

aeol
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FORTRAN IV MODEL 44 ©S VERSION 3, LEWEL 1 OATE 68353 USC/S5L PAGE 0001
0001 SUBROUTINE SuB2
[ THIS ELEMENT GENERATES A UNIT PULSE FOR TX+ THE UNIT
< PULSE IS C{1}s AND 1S GENERATED WHENEVER THE TIME SINCE
(3 THE LAST PULSE 1 PARIII) ) EOUALS UR EXCEEDS THE VALUE
c UF THE QUANTITY{ PARILII*0.1SPARBIII*CI4) )
3 Ctd) IS THE QUTPUT DF THE JITTER NUISE GENERATOR .
o002 REAL REALS1395)s NNs AVIX, TIM
0003 INTEGER INTS(SRT)
0004 DIMENSION C{761, PARI{T5), PARZ(75)s PAR3{75)
0005 DIMENSION MTRX2(75)s MTRX3(75}) MKIRX4175)
0006 DIMENSION DDI100}
0007 COMMON REALS, INTS
acos COHMON 0D
6009 EQUIVALENCE (REALS12), €11)
0610 EQUIVALENCE {REALS(79), DTS2)
o011 EGUIVALENCE (REALSIB1), PAR1(1))
0012 EQUIVALENCE (REALS{156), PARZ{1)}
0013 EQUIVALENCE {REALS1231), PAR3(1))
0014 EQUIVALENCE (INTS{76)y MTRX2(1})
0015 EQUIVALENCE {INTS(151), MYRX3{1})
0016 EOUIVALENCE (INTS(226)s MYRX4(11}
0017 EQUIVALENCE (INTSI376), 1)
onig IFICET60) 10102
0019 1 PARLIII=DTS2/2.0
0020 J=MTRX2(1)
0021 DO(4)=PAR3 L1 ) +PARBL 1 IC L)
0022 Cl1)=1,0
0023 GO 10 4
o624 2 PARLLI}=PARL{1)40T52
0025 TF{PARLLTI=UD 4135140
0026 3 Cil)=0.0
0027 4 RETURN
0028 END
7" EXEC RUNKEDTLMAP,SYS002)
LISY PHASE ROUT 4ROOT, NDAUTO
L1sT INCLUDE  CSMM,R
L1sT INCLUDE  CSM9,R
LIST INCLUDE  DATSH,R
LIsY INCLUDE  LDAD:R
LIST INCLUDE _ 1BCOM#,R
LIsT INCLUDE FI0CS# R
L1sT INCLUDE  USEROPT,R
LIST INCLUDE  UNITAS#,R
LESY INCLUDE  SORT,R
LIST INCLUDE  FRXPRN.R
LIsST INCLUDE  ALOG#R
LIsT INCLUDE _ EXPyR
L1ST PHASE SORTy*sNDAUTD
LIsT INCLUDE  CSHOR
LIsT INCLUDE  CSMLyR
LiST INCLUDE  CSM24R
LIsT INCLUDE  CSH34R
LisT INCLUDE  CSM4,R
LIsT INCLUDE  CSM5,R
LIST INCLUDE  -CSMb,R
LIST INCLUDE  CSHT,R
L1sT INCLUDE  CSM12,R
LIsT THCLUDE  CSHI3.R
LISt PHASE RUN+ SURT, NOAUTO
LISt INCLUDE  CSH10,R
LIST INCLUDE  CSMI1,R
LIST INCLUDE  CSHByR
L1ST INCLUUE  CSMBA.R
LIST INCLUDE  SUBLsL
LIST INCLUDE  SUBLODOLsL
L157 INCLUDE  SUB3,R
LisT INCLUDE  SUB&.R
LIST INCLUDE  SUBS,R

LINKAGE EOITOR HEIGHEST SEVERITY WAS 0
//5Y5001 ACCESS SDSRUR
/7/5Y5002 ACCESS SOSPCH
//5YS005 ACCESS SDSOPT
4 EC CONTINUDUS SYSTEM MUDEL ING PRUGRAR

CONFIGURATION SPECIFICATION
OUTPUT NAME BLOCK TYPE INPUT | INPUT 2 INPUT 3
0 0

NOISE DRIVE 1 J o
NOLSE ORIVE GAIM 2 -] 1 o ]
CORRECT ORIVE ME 3 + 48 -66 o
20H & z 20 4“0 ]
20H 5 z 22 50 0
FILTER SUMMER 6 + 2 9 1]
FILYER INT 1 7 1 o 6 8
FILTER -SUGN INV 8 - T 0 0
FILTER IN 9 1 0 a o
SYSTEM 10 1 o 32 [
MODEL 11 i o 34 ]
SUMMER 12 + 10 23 -11
NOISE 13 4 [] ] (]
SOUARER 14 X 12 12 ]

15 1 o 14 0
GAIN 16 3 17 o L]
NDISE 17 J 0 Q L]
MULT is X & 16 o
GAIN 9 s 13 ] 1]
SUMMER 20 + =10 3 o
Tan 21 K o o 0
SUMMER 22 + =11 3 o
5UM NOSSE OFF 23 o 19 ) 4]
SYSTEM SOUARE 31 X “ 4 0
SYSTEM CUBE 32 X 3% & "l
MODEL SQUARE 33 X 3 5 ]
MODEL CUBE 34 X 33 5 ]
TX GEN 40 2 1 67 0
FILTER OUTPUT GA 48 G 9 ] o
DIVIDE CHECK MEA 49 / 67 o4 []
SPECTAL 50 3 15 21 1
DRIVE MEAN OFFSE 64 o 76 o [+]
HEAN OFFSET o6 X o o o
CHECK DRIVE MEAN &7 1 3 o 0
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1
1

IC/PAR NAME

INITIAL CUNDITIONS AND PARAMETERS

RLOCK 1C/PAR]
2

NOTSE DRIVE GAIN 20,0000
WMy 2(ZW) 0.0
FILTER INT 2 b4 0.0
SYSTEM GAIN 10 0.0
MODEL GAIN 1n 0.0
Y GAIN 15 0.0
5YS NG GA{1.0)} 16 040250

SUM NOISE GAIN
IMPROPER PARAMETER
N

19 10.0000 B0
?PEﬁlFlCAYWH FOR . ELEMENT
D.0

SUM NOISE OFF 23 0.0
TX GEN RANDOM SE 40 0.0
FILYER OUT GAIN 4“8 2224000
TA 50 0.0
ORIVE MEAN OFFSE 86 0.0001
MEAN COR{CORR) 66 10.8394

CHECX DRIVE MEAN 67

o INTEGRATION INTERVAL

0.01000
{ 2 TOTAL TIME
20.00000
x B PRINT INTERVAL
1.

{ o BLOCK FOR

TINE
0,000
0.500
1.000
1.500
2.000
2.500
3.000
3.560
4,000

40005 0.0091 9
RUN TERMINATED BY QUIT ELEMENT

PaRr2
C.0
0.6300
1.,0000
0.0250
0.0025
500.0000
0.0

140000
0.0
T243,0000
0.0200

0.0

0.0
0.0

W MINIMUM VALUE

Y-AXES %

DUTPUTY 1 BUTPUTL
0.0000 0.0000
~10.4422 ~B.0462
=%.9954 “8a1454
~923959 ~841505
~8.1868 ~7+9920
~547907 =1.2149
=3.3175 442648
~1s1%25 840584
0.,0005 95713
3709

¥ oUTPUT(
0.0000
~1.1985
-1,8509
~2.1552
~2.2126
=1.8785
~0,4866
1.4120
1.7769
1.7786

AFTER SELECVING DESIRED UPTION PRESS STARY

SWITCHES SET ON WERE 1)

ouTPUT 49 oUTPUT 10

0.0000
=10, 4422
-9+995%
~9.3959
~B+1868
-5. 1907
~3.3175
~1.1425
0.,0005

4.005 040091
RUN TERMINATED BY QUIT ELEMENT

0.0000
~8+0462
~B.1454
~8.1505
~7+9920
~142149

4e2648

8.0584

9.3713

9.3709

BUTPUT 11
0.0000
=1.1921
=1.8425
~2.1452
=-2,2013
=1+8604
~0.4613
1.4133
1,717
1.7735

AFTER SELECTING DESIRED OGPTION PRESS START

SHITCHES SET ON WERE o

TIKE
0.000
0.500
1.000
1,500
2.000
24500
3.000
3,500
4,000

BUTPUT 49 QUTPUT 10

0.0000
=10.4422
=9.9954

4005 0. 0091
RUN TERMINATED BY QUIT ELEMENT

QUTPUT 11
0.0000
~1.2039
~1.,8585

1.7830

AFTER :SELECTING DESIRED OPTION PRESS START

SWITCHES ‘SET ON WERE o

TIvE

NMITPUT €9 TUTPUY 1D

040000
~10.4422
~949954
~9.3959
~B.1868
=5+ 1307
=3.3175
=1a1%25
0.,0005

4,005 ©.0091
RUN TERMINATED BY QUIT ELEMENT

0.0000
~8e064b2
=B.1454
=8+1505
=7.9920
“1.2149

ha2648

840584

9.3713

9.3709

TUYPLY 1%
0.0000
-1.1581
-1.7957

~045070
1.3391
1.7011
1.7028

AFTER SELECTING DESTRED UPTION PRESS START

SWITCHES SET ON WERE 0

«~B40462
~B. 1454
~841505
~7+9920
-1.2149
% 42648
B8.058%
9,3713
312%

TIME auUTPUT &9~ CUTPUT 10
©.000 00000 0.0000
0.500 =10.4422
1.000 —9.995%

1.500 ~9.3959

2.000 ~fe1868

2.500 ~5. 7907

3.000 ~3+317%

3.500 ~1.1425

4,000 0:0005
240000 130130,
2.0000 131185,

4,005

0.

0091
RUN TERMINATED BY QUIT ELEMENT

8125
9.3709

QuTPUT 11

13000743125
128967.0000
1.8534

AFTER SELECTING DESIRED OPTIUN PRESS START

) OUTPUT 15
0.0000
16225.5742
40247.8672
56877.6486
7220345625
84791,3125
9360946875
107672,4875
129631.3125
130064.2500

OUTPUT 15
0+0000
16237.8867
56948.0430
72303,5000
84910.3125
93695.6875

130120,3125

OUTRUT 15
0.0000
162154062
402099648
56813,9766
T2111.4375
84680.9375
93527.1875
107626.6250
12957446875
130007.3125

DUTPUT 15
0.0000
16302.6289
40529.0039
57327,5703
728153750
85494.6875

131185.98125

QUTPUT 15
0.0000
16149.5820
39972.4062
56438.71773
71608.8750
84109.1250
929322500
106858,9375
128539, 0000

8 MAXTMUM VALUE

20,00
H

=20,0000

[emmmm et —————————

20,0000
1

[y g oy

=20, 0000

20,0000
1

(ST

=20,0000

Jmmmmr et ————————

20.0000
1

It 5t ot ot i om0t

=20.0000

Jrmmmam s e ————————

20,0000
1

Da0615 0.061%

1
128967,0000

»1094 0.,0100

1

0.0202
0.0025

0.06815
0.0125
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SWITCHES SET ON WERE ]

TIME

4005 0.0091
RUN TERMINATED 8Y QUIT ELEMENT

DUTPUT 49
0.,0000

OUYPUT 10
0.0000

OUTPUT 11

548234
5.8235

AFTER SELECTING DESIRED ODPTION PRESS START

SWITCHES SET 0N WERE L1

TIME

o
0.500
1.000
1.500
2.000
2,500
3,000
3,500
4,000

44005 0.0091
RUN TERMINATED BY QUIT ELEMENT

OUTPUT 49

0.0000
=104 4422
~%.9954
~9.3959
=8.10868
=5.:7907
~343175
=le1425
0.0005

GUYPLT 10

ouTPUT 11
0.0000
~3.8704
-4,8075
=5.0621
~5.0288
~2»,1230
243196
5.6224
5.7922
5.7923

AFTER SELECTING DESIRED OPTION PRESS STARY

SWITCHES SET ON WERE [

TIKE
0.000
0,500

4,005 00091 9
RUN TERMINATED BY QUIT ELEMENT

OQUTPUT 9
0.0000

—10+4422

QUTPUT 10

0,0000
~B+0462
=84 1454

QUTPUY 11
0.0000

=349495
~4,8655
~5.1138
=5.0887
-241902¢
242964
5.6841
5.8594
5.8595

AFTER SELECTING DESIRED OPTION PRESS STARY

SWITCHES SET ON WERE o

DUTPUT 49
0.0000
~10s4422
~9.9954
-9,3959

DUTPUT 10
0.0000
~8.0462

S
b

BUTPUT 11
0.0000

AFTER SELECYING DESIRED OPTION PRESS START

SHWITCHES SET ON WERE [

TIME QUTPUT 49 OUTPUT 1o
0.000 0.0000 0,0000
0.500 ~10s 4422 “8+0462
=Sedwih =8 l4b4
=9,3959 ~B84+1505
~8.1868 ~7.9920
=5, 7907 - 149
«3.3175
-1.1425
0.+0005
1 3.0000 81028,4375
1 3.0000 80901.4375

44005 0. 0091
RUN TERMINATED BY QUIT ELEMENT

9.3709

OUTPUT 11

S5
80411,3750
8057L.6875

5.8410

AFTER SELECTING DESIRED OPTION PRESS START

SWITCHES SET ON WERE [

TIME
0

4.005 0.0091
RUN TERMINATED B8Y QUIT ELEMENT

OUTPUT 49
0..0000
~10.,64622

DUTPUT 10
0,0000

*
QUTPUT 11
0.0000
~5e1054
~6.5614
~6+6563
~625015

T.6017

AFTER SELECTING DESIRED DPTION PRESS SVART

SWITCHES SET ON WERE o

QUTPUT 49

=5.7907
=3.3175
=le1425

0.0005

BUTPUT 10

OUTPUT 11

AFTER SELECTING DESIRED OPTIGN PRESS 5TART

QUTPYT 15

35691.9570
45264.8359
54875,5000
61643.7070
69799.3750
8052840000
80735.6250

ouTPUT 15
0.0000
11480.5742

61882,06430
70039.0000
8081944375
B1028.4375

GUTPUT 15
0+0000
1135646953
25342.0586
35501.4258
4503605391
56620.2656
61381.1289
69535.,6875
8020544375
80411.3750

BUTPUT 15
0.0000
11431,5273
25555.2383
35775.9922
45365.0508
54984.2383
6176645547
69933,8125
B80693.0000
B80901.,4375

CUTPYT 15
040000
11383.3711
2942646094
35608,8203
4516547695
54768.0195
6152243047
69656,2500
80364.8750

0.1731
0.0925
1

BO571.6875

QUYPUT 15
0+0000
8600,8867
1835843164
26896.8125
35114,9453
43921.4414
49912.2344
57822.3203
6634347500
66478,2500

QUTPUT 15
0+0000
BB00,4531
18781.4336
27377.2344
35639.9766
44464,2773
50506+ 8945
58443.3281
67056,9375
67195.3125

=2040000

Jrumaeemm e a e —————d

i

20.0000
1

=20.0000

e e LR Y

20,0000

et 2t

20.0000
1

~204 0000

20,0000
1

=20.0000

e

20,0000
1

ottt ot 1t e

0.1000
0.0%00

e.0815
0.0125

0.1815
0,0225

~20.0000

CRR R ——

20,0000

1

~

~2040000

A S S

20.0000
1
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SWITCHES SET DN WERE 0

TIKE DUTPUT 49 auTPUT 10 OUTPUT 11 QUTPUT 15 =20.0000 20,0000
0.000 0.0000 0.0000 0.0000 040000 et i
0,500 =104 4422 T ~B.04b62 ~6.2394 843741484 I
1.000 ~9.9954 “8.1454 =6+6488 18009,0820 1
1.500 ~9,3959 ~841505 =6+7425 26500.5234 1
2000 ~841868 ~T.9920 =6.5250 34675.1367 i
2.500 =5+7907 ~1,2149 ~1.0521 43391.5820 i
3.000 ~3,3175 442648 3.7280 49410.3750 i
3.500 ~1.1425 840584 T1.5245 57323,8633 I
4.000 0.0005 9.3713 Te6354 65819.7500 1

9.3709 726354 ©5953.0000

N 4.005 0. 0091
RUN TERMINATED BY QUIT ELEMENT
AFTER SELECTING DESIRED UPTION PRESS START

SHITCHES SET ON WERE 0

TIME QUTPUT 49 oUTPUT LD QUTPLT 11 oUTPUT 15 ~20.,0000 20.0000

0000 0400060 0.0000 0.0000 0.0000 lomemcer et e e e 1
0.500 =10s 5422 ~8.0462 ~6.0925 8610.7070 1
1.000 ~9.9954 ~be5514 18387.5508 i
1.500 ~9.3959 ~be 6472 26931.6406
2.000 ~B.1868 ~6+5942 35154.1211 1
2.500 -5, 7907 =1.1342 43963,1719 1
3.000 ~3.3175 3.8495 4995443750 1
3.500 ~1. 1425 Te4856 57861.9531 1
4+000 0.,0005 7.5938 66389.5625 I
4,005 0.0091 T1.5937 6652443125 1

RUN TERMINATED BY QUIT ELEMENT

AFTER SELECTING DESIRED DPTION PRESS START

SWITCHES SET ON WERE o

TIME DUTPUT 49 VUTPUT 10 QUTPUT 11 QUTPUY i5 ~20.0000 20,0000
0.000 0.0000 0.0000 0.0000 0.0000 | e e e b et e
0.500 ~10s4422 ~8.0462 ~6.1183 8591.1680 1
1.000 =9.995¢ ~Be145% 645713 18329.2617 1
1.500 =943959 ~B+1505 ~646653 26862.1992 1
2,000 -B.18568 . ~T<9920 =6,5088 350760000 1
2.500 ~5.7907 ~1s2169 ~1.1338 43880,0078 1
3.800 =3,3175 ha2648 3.8679 49B70.4687 1
3.500 1. 1425 8.0584 7.5026 57783.0703 1
4.000 0.0005 9.3713 1.6097 66298.3125 1
1 4.0000 6T195.3128 65953.0000 06,2685 0.1000 De1315 0+2815
1 420000 6652443125 664932.5000 0.0184 0.0184 0.0228 0,0409

4,005 0.0091 9.3709 T.6096 66%32.5000 1

RUN TERMINATED BY QUIT ELEMENT
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APPENDIX V
SPECIAL DIGITAL PROGRAMS FOR HUMAN OPERATOR MODELING

This appendix presents the special programs written for the
human operator modeling studies of Chapter 5.

The first listing is for the special program CASS which was
used to translate and punch the S.T.I. data into format 20A4.

The second listing is for special program NEAL by which the
above data is read and stored for use during the human operator
modeling studies. This special program replaced the standard
CSMP subroutine CSMM,

The third listing illustrates the most complicaied modeling
situation considered. It is for model 5 of Table 5.3, and contains
three special subroutines. The first subroutine performs the Kiefer-
Wolfowitz stochastic approximation iterative calculations for
the transport lag T, the gain K, and the time constant B of the
sampled-data model. The second subroutine brings the stored
data i(kTq) and m(kTq) into blocks 1 and 2 via linear inter-
polation. The third subroutine generates a transport lag of T
seconds. However, the control of the transport lag is performed
in the first subroutine. Several iterations of the Kiefer-Wolfowitz

algorithm are included.



//CASS JOB 4111899

IAS51 150R42

F7MATNGG

FORTRAN IV
[l

EXEC FORYRAN

MODEL .44 PS VERSIGN 3, LEVEL 1 DATE 68353 USCsSst PAGE
DIMENSION 1{2010), M{2010)
READ 15,1)
READ {54

-

P owoN

11 #
INTEGER®2 NEDI600+2)
FORMAT {151%)

BO 2 .3 = 1y 600

NEDLIs1) = 110

NEDLJ2) = M)

WRITE 16,3) (NEDtJs11, NED{J»23, J = 1y 600}
FORMAT te14, (21201

WRITE (7,4} NED

FORMAT {2044}

S0P

END

wool
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n

7 /NFAL

no26
o028
0629

0030

0031
on32

0033
0034

0035
0037
0028

0039
0040
0041
0062
D043

JOB

1290002

EXEL FURTRAN{BCL)
FORTRAN 1V

“

L R T s Lo R T | LT

anen

e

on

o

MODEL 44 PS VERSION 3, LEVEL 1 DATE 48353

527

1
1

- o

100

109
110

115
118
119
121

12

n

12

o

j¥3

-

128

129
130

13

"

150

160
165

170

200

REAL*4  DUMMY{101}

REAL REALS (395)

INTEGER INTS{587), TESTI' TEST3, TEST4,TEST?
INTEGER®2Z  NED(60042

UBIMENSIUN C(76)

CUMMON  REALS, INTS

COMMON NED, DUMMY

EQUIVALENCE ( INTS{380}, KEY1 } s+ -REALSH
EQUIVALENCE ( INTS(381), KEYZ }
EQUIVALENCE ( INTS{382), KEY3 ]
EQUIVALENCE ( INYS(383), KEYa ¥
EQUIVALENCE { INTS(391), KEY12 ]
EQUIVALENCE 1 INTS{392), REYL3 ]
EQUIVALENCE ( INTS{393}, KEY14 ]
EQUIVALENCE  ( INTS(394), KEYLS 1]
EQUIVALENCE | INTS{395), KEYLE ]
EOQUIVALENCE { INTS(525), TEST1 )
EQUIVALENCE { INTS(527), TesST3 1
EQUIVALENCE { INYS(S28), TEST4 ]
EQUIVALENCE ( INTS{531), TESTV7 1]
i )

EQUIVALENCE INTS{587), ARG
READ (1,527} NED
FORKAT {2044}

INlTIALllANON SUBRUUT INE
CALL LOAD (¥SURT?
caLL Csno

CONFIGURATION SECTION

23,

USC/SSL

ey

PROGRAM WILL NOT BRANCH BEYUND THE CUNFIGURATIUN SECTION
UNTIL SUCCESSFUL SORT T'.E’ST IS ACHIEVED AT WHICH TIME THE

SWITCH TESTX IS SET T

CONYINUE
G0 TO f 12, 11}, FEST1
60 79 & 12,100}, KEY)
GET cmnc. SPECS
CALL C
PIEPAHE FUR SORY
CALL CSM2
TESTl #'1 1F PRE-SORT SCAN INDICATES ERROR
TESTL # 2 IF PRE-SORT SCAN IS SUCCESSFUL
[=:3 'lgu{§h13h TESTL

CALL CSM3
TEST FOR SUCCESSFUL SURT

TEST1 # 1 IF SORT PROCEUURE IS UNSUCCESSFUL

TEST1 # 2 IF SORT PROCEOURE 15 SUCCESSFUL
GO TO { 12,100} » TESTE
CONTINUE

SET~UP SECTION

PARAMETERS AND INITIAL CONUITIONS
60 TO (110,109}, VESY3
60 TO (110,115}, KEY2
CALL C5Mé

CONT INUE
FUNCTION GENERATORS ERSES
GO TO (121,118} TEST4
60 YO (120,119}, TEST3
GO TO (120,121)5KEY3
CALL CSHS
CONTINUE

SET TEST3#2 TO INDICATE COMPLETION UF INIVIAL SPECIFICATION

<
GF CONFIGURATION, PARANETERSy ARO FUNCTION GENERATOR INTERCEPTSCSAAOTLD
YEST3 = 2 CSAAD

LINTERRUPT POINTE
CALL DATSH {0,KEY16)
G0 YO (225,125). KEYl6
CONTINUE
PUNCH CARDS  *SS2s0sssssnsaes
60 TO {127,126}y KEY12
LALL DATSWi12,KEY12 )
GU TD (127,128), KEY12
CALL CSmb
XIKTERRUPT POINTD
CALL DATSH {O,KEY16)
60 TO {225,128)y KEY16
CONT INUE
TIMING  SEASRERARREERESEXEERS
G0 TG 1130,129)y TESTT
YESTT # 1 UNTIL FIRST TIME THROUGH CSM7
7T % 2 AFTER FIRST TIME THROUGH CSH7
6O TO (l!Dy135). KEYH
CALL CSmM?
XINTERRUPT POINTD
CALL DATSW {O4KEYL16)
GO TO (225,135}, KEY1S
CONTINUE
PLOT SPECS SHSERBRE ISR REE
1aRG » 2
CALL CShe
XINTERRUPT Pﬂln‘ln
CALL DATSN (O4KEY
GO TD {2254155), KEV16
CONTINUE
NEW PLOT FRAME BUEERCHENRE
ARG = 1

CALL CSM9
CONTINUE
OUTPUT SPECS #easssssssasnsns
ARG = 1
CONTINUE
CALL LOAD {'RUN'Y
CALL CSMB

CINTERRUPT POINTD
CALL DATSH {0,KEY16)
60 TO {225,200), KEY1E
COUNTINUE

PAGE

1CSAAOL40
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FORTRAN IV MODEL 44 PS5 VERSION 3, LEVEL 1 DATE 68353 ust/ssL PAGE 0003
6076 60 7D {210,220) 5 KEYLS CSAALLS0
n077 210 CONTINUE CSAALLTO
ons READ {141) {C(N}, N'= 1, 76}
0079 1 FORMAT {4E2D.8)
c COMPUTE SECTION SHEAREIDRRE C£SAAL190
0080 220 CALL CSMiD ’ CSAAL200
< Csaaizlo
4 CALLS INTERRUPT SUBROUTINE FOR NEW SENSE SWITCH SETTINGS €SAal1220
no81 225 CONTINUE
fos2 CALL LOAD {'SURTY)
0083 CALL CTSM12
0084 GO T3 (23042401 ,KEY13 L5AA21240
0085 230 CALL CSMi3 C5AAL1250
0086 GO TO 225 CSAAL260
0087 240 CONTINUE £SAAL270
N0R8 60 TO {250,101 ,KEYLA CSAAL1280
c C5AA1290
c SAVE STATUS CSAAL3LO
0089 250 CONTINUE £SAA1310
0090 WRITE (2410} (CIN}s N = 1, 76}
009 GO 70 10 £SAA1330
0092 END CSAAL340



JINEAL JOB 111899
1A551 142027
//SUBL  EXEC FORTRAN(BCU)
FORTRAN 1V MODEL 44 PS VERSION 2, 1LEVEL 1 DATE 68354 USCISSL PAGE
0001 SUBRUUT INE susl
c THIS SUBRUUTINE GENERATES THE APPRUXIMATE GRADIENT SEARCH (XKIEFER~
1 MOLFUMITZ} FUR 8PTIMAL VALUES OF Ty Ky AND B, THE CUNTROL UF THE
< TRANSPORY LAG (T} SEARCH 1S EXERCISED IN THIS BLUCK RATHER THAR IN
< SPEC SUBRUUTINE SUB3 BECAUSE THE GRADIENT CALCULATIUNS REQUIRED ARE
4 THE SAME AS THOSE FOR THE SAMPLING INTERVAL FUR WHICH THIS SUBRUUTINE
c WAS URIGINALLY DESIGNED.
6002 REAL REIL$(395
0003 REALSGY
0004 INTEGER lNTS(bB?)
0005 INTEGER TESTS
0006 INTEGER®*2 NED(6C0y2)
0007 DIMENSIUN C( éhﬂﬂile'lb)|H7Rx3(15ldﬂkxh(75)
6008 UIMENSIUN PARL{TS), PAR21T5}, PAR3LTIS)
0009 CUMMON REALS, INTS
0010 COMMON NED
0011 COMMON DD
o012 EQUIVALENCE (INTS{76)¢ MTIRX2{1}}, (REALS{2}, C{1}}
ol3 EQUIVALENCE {INTSI3T61, 1 Ty (REA\.S('IQ’. DTS2 )
0014 EQUIVALENCE EALS({81), PARLIL))
0015 EQUIVALENCE {INTS{1511, “TRXZ(IH,(lNTS(ZZb)'HTRXQ(ll
0016 EQUIVALENCE (REALS{1561, PARZ2{1)) o+ (REALSI2311,PAR3I1))
0017 EQUIVALENCE (INTS(529) , TESTS )
oola EQUIVALENCELDQU(L) s YRT I 4DUCZ 1, YPT 1 o (DU o ¥IKD o S DULS) o ¥PK)
0019 EQUIVALENCE(DU{51,YHB) 4 {DDL6),YPB)
0020 IFIC{T6) )1y 102
0021 1 PARLUTI=DTS2/2.0
0022 Cilr=1.0
0023 4 RETURN
0024 2 PARL(1)=PARL{T)+UTS2
oe2s IF{PARLIT)I=PAR2{T1}3,141
0026 3 Ctir=0.0
o027 1F{C176)-29:.41495+5
0028 5 TESTS=6
c JEMTRX3{1)=8L110}
0029 JuMTRX3{1)
0030 CN1mQ 1 ¥ {PARZ(JI®*(-,166))
0031 o +0%CHI
0032 CN3=CN2
G033 NaPAR3(1)
0034 GO TU (20421 225 235 24+ 25y 260N
c PARZ2(I}= T
0035 20 PARZ(I)=PAR2(1)-CN1
0036 PAR3(1)22.0
0037 RETURN
0038 21 YMT=C(9)
0039 PARZ(1)=PAR211)+2.0%CN]
0040 PAR3(11=3.0
0041 RETURN
0042 22 YPT=C(9)
0043 PARZII)=PAR2LI}~CN1
< MTRXG{ 1) =BLL&)
0044 JEMTRX4(F}
PARZ{J)=PARZL4)w K
0045 PARZ(J)=PARZI)-CN2
0046 PAR3(11=4.0
0067 RETURM
0048 23 YMK=C(9)
0049 JEMTRX4{T)
0050 PAR2{J)=PAR2{J)42.0%CN2
0051 PAR3{1)1=5.0
0052 RETURN
005 24 YPK'CI‘H
0054 JERTRX&
0055 FARE(.H-PARZ(J)—CNZ
€ PAR3{J)=PAR3{4)2B
0056 PARZ(J)3PAR3{J)~LN3
0057 PAR3{11=6,0
0058 RETURN
0059 25 YMB=C{9)
0060 JEMTRXALT
0061 PAR3{JISPARI{II+2.0%CN3
0062 PAR3{[)=7.0
0063 RETURN
0064 26 VPB'C(‘J)
0065 J=MTRX&
0066 PAR!(JI"PAR3IJ)-CN3
0067 Pl=pARZ{1)
0068 P2=pPARZ (S}
0069 P3=pAR3{J}
[4 JJIHTRXS(HtMJ 10)y PAR2{10)=N (AN INDEX}
0070 JI=MTRX3{
0011 m-o.oooom/?ﬂzuu
0072 At= {AN/CNY}
0073 Dl=AL®( YMT-YPT)
0074 D2%10.0%AL S L YNK=-YPK)
0075 D3=10,04AL®{ YMB-YPB}
0076 P4=D]1
0077 P5=02
0078 PoxD3
0079 IF{ABS(D11.LE.0,1)GD YO 9
0080 Gl=0.1*D1/ABS(D1)
0081 9 CONTINUE
0082 IF{{PARZ(1)4D1),LE.0.018)G0 TO 10
0083 PARZ{1}=PAR21(]1}+D1
0084 10 CONTINUE
ooes 1F{ABS{02)4LEL2,0160 T 11
0086 DZ‘Z.O'DZ/ABS(DZ)
o8y 11 CONTINI
0088 lFl(PARZ(JNDZ!.LE-0.00E)GD 10 2
008% PARZ{J)*PAR2{J3)+D2
6090 12 CONTINUE
0091 IF1ABSID3).GE.5.0)03=5,0#D3/AB5(D3) -
0092 PAR3{JI«PARI(J)+D3
0093 IF{PARI{J)JLE.0.OIPARS (I =00
0094 PAR3(I)=1.0
0095 PAR2{JJ}=PAR2{JJ)+1.0
0098 WRITE{3¢30) PAR2{J4)s YHTs YPT, P&y Dly Ply PAR2LE)
0097 WRITE(3,30) PAR2{JJ}s YMKs YPKy PS5y D24 P2y PAR2(J}
0698 WRITE{3,300 PAR2{JS)s YHBy YPBy Pby D34 P3» PAR3(J)
0099 RETURN
f100 230 FORMATULIHLLTFLT.4)
o10n END

0001

193



an

C PROGRAM TO 8RING DATA I AND M INTO BLOCKS 1 AND 2 VIA INTERPOLATION

KwMTRX3{1}
L=NTRX4L 1)
TK=CiT8)
4 RETURN
2 PARL(I)~pARL{1}+DTS2
10 FORMATELH 42160 F1To4y162F17.4216,F1T.4)
TT=(C{T5)-TK)/.05
CIKI=NED{P,1)+TT#(NEDIP+1,1)-NED(Ps1))
CLLI=NEDI Py 2)+ TTA{NEDIP+1,2)~NED(P,2))
1FLPARLILI)1=.05)3,101
3 CONTINUE
IF(C176)-29,414,5+5
5 TESTS5=6
PARZ(11%p.0
RETURN
END
SUBRDUT INE SUB3
[ PROGRAM TO GENERATE A TRANSPORT LAG OF T SECONDS, THE
c CONTROL OF THE TRANSPORT LAG V1A GRADJENT CALCULATIONS IS PERFORMED
C IN SUBL IN THE SAME MANNER AS WAS DUNE PREVIOUSLY FUR THE SAMPLING
14 INTERVAL, THIS SPECTAL ONLY PROVIDES A TIME DELAY OF. T SECONDS iN
c THE ERROR SIGNALa
REAL REALS(395)
REAL®*4 DD(103,€(10)
INTEGER INTS(587)
INTEGER®2 NED(600+2)
DIMENSION C{76) JMTRX2475) sHTRXI{75} ,MTRX4(TS)
OGIMENSION PARL{75)s PAR2(T5}, PAR3{75)
COMMON REALS, INTS
COMMON NED, DD
COMMON £
EQUIVALENCE (INTS(76), MTRXZ(11), (REALS(2), CI})}
EQUIVALENCE (INTS{376), 1 Ye IREALS(T9}, DTS2 )
EQUIVALENCE {REALS{81)y PARLILN)
EQUIVALENCE (INTS{151)y MTRX3(1})s(INT5{226) +MTRX4{1))
EQUIVALENCE (REALS(156), PAR211)) »{REALS(231),PAR3(1))
EQUIVALENCE {INTSU529} , TESYS )
INTEGER  TESTS
JuMTRX2(1)
TO=PAR2{J)
IF{C(T6))TyT02
T Etl)=0.0
E12)=0.0
£43)20.0
€1{4)%0.0
Ef5)a0.0
E{6)=0.0
E(T)=0.0
E(8)=0.0
E(9)20.0
E110)%0,0
1 PARLIT)=DTS2/2.0
E{1)=E{2)
E(2)=E{3)
Ei13)=E(4)
E{6)aE(5)
ElS)=Ele)
EL6)=E(T)
E(T)=E(8)
E(8I=E(9}
EL191=E{10)
€(10)=C(2}
< Ct2) IS THE ERROR SUMMER
TL121=E4))
10 FORMATULH 211F9.4)
4 RETURN
2 PARLI1)=pARLI1)4DTS2
IF{PARL{T)~TD/10.0)3¢1s1
3 CONTINUE
F1C(T6)29.41495,5
5 TESTSua
RETURN

-

SUBROUT INE SUB2

PROGRAM TO BRING DATA 1 aAND H INTO BLOCKS 1 AND 2 VIA LINEAR

INTERPOLAT ION

REAL  REALS{395)

REAL*4  DD{10)

INTEGER -INTS(587)

INTEGER®2 NED(600,2)

DIMENSIUN C(76)yMTRX2( 751 yMTRXI(T5) sMTRX4 (TS}
DIMENSION PAR1{75)s PARZ{TS5}, PAR3ITS)
COMMON REALS, INTS

COMMON NEO, O

EQUIVALENCE (INTS(76)s MTRX2(1}).s (REALSE2}, C{1})
EQUIVALENCE (INTS(376), I ¥r (REALS(T9}, DTS2 )
EQUIVALENCE AREALS(81)y PARLLL))
EQUIVALENCE (INTS{151)s MTRX3(1)1sCINTS(2260 MTRX411))
EQUIVALENCE {REALS(156), PAR2(1)) +{REALS(231)4PAR3(1})
EQUIVALENCE 1 INTSI529) » TESTS )

INTEGER TESTS

a

PuPAR2({)

IF1CLT6) 11,102
PARLLT)In0TS2/2.0
PARZ{I)apPAR2(1141.0

END



IISVSOOZ ACCESS soSL1B
EXEC RLNKEDT(MAP,5Y5002)

LIST PHASE ROOT,ROOT yNOAUTO
LIsST INCLUDE  NEAL,R
LISY INCLUDE  CSM9,R
L1187 INCLUDE  DATSHsR
LISy INCLUDE  LOAD.R
L1ST INCLUBE  1BCOM#,R
LIsT INCLUDE F1QCS#,R
LIsY INCLUDE  USEROPT,R
Lisy INCLUDE  UNITAB#,R
LIST INCLUDE  SGQRT+R
LIST INCLUDE FRX’R*.R
LIST INCLUDE  ALOG

Lisy INCLUDE  EXPy) l
L18Y PHASE SORTo"NOAUTD
L1ST INCLUD! CSkO,R
L1ST lNCLUDE CSM1,.R
LisY INCLUDE  CSM2,R
LIST INCLUDE  CSM3.R
LIST b{ CSMaeR
LIST INCLUDE  CSMS,R
LISY INCLUDE  CSM6sR
L1sT INCLUDE  CSM7.R
L1ST INCLUDE  CSMI24R
L1SY INCLU CSM134R
LEST PHASE RIN'SDtT-NOAUYD
LIST INCLUI CSM104R
LISy INCLWE CSM1L,4R
LISY INCLUDE  CSMB4R
LIST INCLUOE  CS5MBAsR
LIST INCLUDE SuBl,L
LIST INCLUDE 5uUB1ODO1,L
L1ISY INCLUDE  SUB10002sL
LiST INCLUDE  SUB&.R
LISY INCLUDE  SUB5.R

LINKAGE EDIYOR WIGHEST SEVERITY WAS ©

4/5Y5001  ACCESS SDSRLR
//8YS002  ACCESS SDSPCH
//5¥5005  ACCESS  SOSDPT
"? EXEC CONTINUOUS SYSTEM HODELING PROGRAM
CONFIGURATION SPECIFICATION
OUTPUT NAME BLOCK TYPE INPUT 1 INPUT 2 INPUT 3
INPUT(IT) 1 X o o o
SUMMER 2 + 1 -4 []
MODEL INTEG 4 1 o 32 14
TD GRADs CONT.(S & 1 9 10 4
SYSTEM DUTPUT 6 K ] 0 o
ERROR SUM 7 + 1.3 -4 ]
SQUARE 8 x 1 7 o
INTEG £R SQUARE 9 1 o e 0
N 10 K 1] o o
PUSPEC) COUNY n 2 1 1 6
TRANS LAG OUTAUT 12 X o o 0
TRANS LAGISPECIA 13 3 5 0 o
SIGM REVERSER 14 + by 0 [}
INITIAL CUNDITIONS AND PARAMETERS
1C/PAR NAME BLOCK. 1C/PARL PARZ PAR3
INPUT (1T) 1 0.0 0.0 0.0
MODEL 1.Cey Ky B 4 0.0 0.1000 0.0
TD TIME DELAY 5 0.0 R 0a2150 1.,0000
QUTPUT(MM} 6 0.0 0.0
INTER. -SQ. ER. .0000 0.0
INPROPER PARAHETER SPECIFICATION FOR ELENEN'I’
+0000 1.0000
P COUNTER (SPEC) ll 0.0 0.0 0.0
TRANS. LAG {SPEC 13 0.0 0.0 0.0
U INTEGRATION INTERVAL
0.,01000
{ 8 TOTAL TIME
30.00000
x B PRINT INTERVAL
.
{ 'n BLOCK FOR Y-AXIS 3 H MINIMUM VALUE 2 8 MAXIMUM VALUE
TIME BUTPUTY ) DUTPUTH ¥ OUTPUT( ] QuIPUY 9 0.0 L
0.000 0.0000 0,0000 0.,0000 0.0000 1
1.000 =174.0000 -5.5247 =145,0000 20762.9336 1
2.000 =76.0000 ~20.5907 94031.6875 1
3,000 =7.0001 =22.3442 103845,1875 1
44000 =111.0001 «2243946 119391.6250 1
5.000 ~153.9997 ~32.T46% ~143.0001 155144.1875 1
6.000 ~157.0000 ~41.8270 =65.0000 168111,4375 1
T.000 =137.0001 =50,3741 ~100.0001 179303.6875 1
8.000 ~148.0001 ~61.4614 ~160,0000 21846642500 1
9.000 70.0001 ~65.8497 =59.0000 237347.4375 1
10,000 ~40.999% =57.34681 33,0001 272134.6250 1
11.000 ~50.0000 ~55.8409 280318,8750 i
12,000 116.0000 =52.3286 288519, 6475 1
13.000 256,0000 =3249429 483362,5625
14.000 138.9999 ~B45259 713336,1875
15.000 51.0000 1.3414 758001.8125
16,000 =5.0001 4.8665 171992.5000
17.000 ~110. 9995 1.2392 782290.3750 1
18.000 -62,9993 =9.5273 809060.3125 1
19.000 128.0023 ~T+84TH 114.00064 830436.4375 1
20,000 128.9986 5.9312 169.9999 928983.3125 1
21.000 =39,9998 13,3071 17.0000 9820656.6250 i +
224000 49.0002 10,1029 ~1.9999 $84392,8125 1
23,000 21.9994 15.8490 1069997 1015204.1875 1
24,000 15.9999 20.1324 60,0003 1027280.5625 1
25.000 4249995 19,8030 13.0000 1032235,0625 1
26,000 100.9999 22,7592 18,0000 1036194,3125 i
27,000 =3+0005 28,1706 309997 1045705,1875 1
28,000 17.9996 24,0136 =16,9996 1067649,0000
29.000 156.9997 27.0920 112.0007 1073173,0000 I3

32.5272 154.3995 1100442.0000

29 440! 172.3003
RUN TERMINATED BY QUIT ELEMENT

195



AFYER SELECTING DESIRED UPTION PRESS START

SWITCHES SET ON WERE L]

TIME ouTPUT 1 GUTPUT 4
0. 060 0+ 0000 040000
1,000 ~174.0000 =659304
2,000 =764 0000 =214%701
3,000 =7.0001 “21s4392
44000 ~111,000% ~22+7534
5.000 ~153.9997 ~33,4542
62000 ~157. 0000 ~&2e4310
7,000 ~137.0001 ~50.9917
84000 ~148.0001 ~61+9558
9.000 70,0001 =65.0906

10,000 =40 9999 ~56.6722
11,000 ~50.0000 =55.7884
12,000 116.0000 ~50+9875
13.000 256.0000 ~30.7637
14,000 138.9999 =T,2803
15.000 51.0000 123185
16.000 =5.5001 541156
17.000 =110.999% =0.1727
18.000 ~62.9993 ~10.2478
19.000 128.0023 =~1.0175
20.000 128. 9986 T.2558
21.000 ~39.999% 13,1068
224000 49,0002 10.0333
23,000 21.9994 1624161
24,000 15,9999 20.1237
25,000 42,9995 19.600%
26,000 100.9999 23.0317
27.000 =3.0005 21.9189
284000 17.9996 23,4250
294000 15649997 2842540

29,405 172.3003
RUN TERMINAYED BY QUIT LLEMENT

QUTPUT: & outRuT - 9
040000 00000
2029141914
92027.0625
101693,1250
~99.0000 - 117050,9375
~143,0001 " 152098,5625
~65.0000. 164800,4375
~100.0001 175767.8125
=160.0000 214322.8125
~59,0000 233142,8125
33,0001 26704%,3750
~29.0001 275073.5G00
51,0001 282971.9375
183.0000 #73802.5000

52.0001 157029.6875
~5%,0002 767196.3750
~77.9995 793114.6875
11440004 B14111.5625
169.9999 911004.7500

17,0000 963461.1875

~1.9999% 965653.7500
106.9997  996141,1875

60,0003 1008163.8125

13.0000 1013177.0625

18,0000 1017105.6250

30.9997 1026531.3125
1649996 1048065.9375

0000

0.0 AEFERERRNE

Ot ot 80 Bt

e e o o Ottt 0 B e B gt e B

112.0007
154.3995 1080216.0000

AFTER SELECTING DESIRED UPTION PRESS START

SWITCHES SET ON WERE 0o

TINE ourPUT 1 GUTPUT &

0.000 0.0000

1.000 =174.0000

2.000 +764+0000

3.000 =7.0001

4,000 ~111.0001

5.000 =153.9997

6,000 =157.0000 ~414+3509

7.000 ~137.0001 ~49.6659

8.000 =148.0001 =60.7063

9,000 70.0001 ~66.3619
19.000 =50 .9999 -58.2823
11,000 =50,0000
12.000 116.0000
13.000 256.0000
14,000 138.9999
15.000 51,0000 .
16.000 ~5.0001 409565
17.000 =110.9995 2.2631
18.000 ~62.9993 ~8.5551
19,000 128.0023 ~8.7830
204000 128.9986 446794
21,000 =39, 9998 13.4916
22,000 49,0002 10,4015
23.000 21.9994 1543105
24,000 15.9999 2041716
25,000 42,9995 20,1335
26.000 1009999 22,8578
27.000 =3.0005 28,2746
28,000 17,9996 25,9294
29.000 15629997 2640104

29405 172.3003
RUN TERMINATED BY QUIT ELEMENY

OUTPUT & QuTPUT 9
0.0000 0,0000
~145.0000 21194.1211
=71.0001 956070.6815
33.0001 1060995625
«99.0000 121887.0625
=143.0001 158298,8125
~65.0000 171569,5000
=100,0001 183005.2500
«160.0000 222794.5625
~59,0000 261805.7500
33,0001 277547.4375
=29.0001 285936.0625
51.0001 294413.2500
183.0000 493242.8730
152.0003 728239.8750
T70.0000 773695,5625
52,0001 787698.2500
~54,0002 798179.4375
~77,9995 B825874.5000
114,0004 B47602.7500
169.9999 947801,9375
17.0000 1001697.2500
~1.9999 1004152,9375
106.,9997 1035249.0000
5040003

0.0 e300

..
fees

| ——————

- S g 0 g B

13,0000 1052293.0000
18.0000 1056233.0000
30.9997 1065317.0000
-16.9996 1083195.0000
112.0007 1093866.0000
154,3995 1121640.0000

AFTER SELECYING OESIRED UPTION PRESS STARY

SHITCHES .SET ON WERE o

TINE OUTPUT L DUTPUT - &
0,000 0. 0000 0.0000
1.000 «176.0000 11.1552
2.000 =76.0000 46,9335
3.000 «7.0001 65.1500
42000 ~111.0001 82,9694
5.000 ~153.9997 126.7769
6,000 ~=157.0000 179.3927
7.000 ~137.0001 243.9871
8.000 =-148.0001 328.8323

7040001 419,8401
=40, 9999 502.8679
=50.,0000 51644277
1156.0000 149.7339
2%6.0000 8762056

138.9999 1013.,5715
51.0000 1205.5273
=5.0001 1449.2610

17,000 =110.9995 1757, 8867
18,000 =62+9993. 21475427
19.000 128.0023 259%,5701
20,000 128.9986 310844060
21,000 ~39.9998 3739.2134
22.000 49,0002 4523.2500
23.000 21.999% 545245195
244000 1529999 6577.3867
25,000 42.999> T945,6828.
264000 100.9999 4592.9766
27,000 =3,0005 11577, 4141
28,000 17,9996 13995.5000
29,000 156.9997 16903.9727

29405 1724300 18239.359%
RUN TERMINATED BY QUIT. ELEMENT.

oUTPUT & uTRUT 9

~145.0000  245606.4141
=71.0001 1468603,9375
33.0001 198104,1875
~99.0000 255912.2500
~143.0001 486107,3750
=65.0000 75456602500
~100,0001 1216057.0000
~160.0000 2134839.0000
«59,0000 3347409.0000
33.0001 4339199.0000
=29.0001 6054445.0000
51,0001 8538632.0000
183,000010749105.0000
152.000313557814.0000
10,00001876670%.0000
52 20000

0.0 ssseasnsse

1
{
+

-

=55,000239503712.0000
_ 6.0000

116.00068 0000

1869

o U, o e . gt iy 50 g D 00 Bt

AFTER SE.LEC’”NG DESIRED UPTIUN PRESS START

SWITCHES SET ON MERE o
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TIKE
0.000
1.000

64000

10.000
11.000
12.000
13.000

GUTPUT 1
0,0000

=T6.0000
~T«0001
~111,0001
-153.9997
~-157.6000
~137.0001
~148,0003
70.0001
=40.9999
~50, 0000
116.0000
25840000
138,9999
51,0000
=5.0001
=110. 9995
~62.9993
128.0023
128,9986

QUTPUT ¢
0,0000
~21.8875
~T1.8715
=58.8853
~4be 1541
=17.0421
=944 7957
~106.9582
=128.0737
=119,6102
=6844682
«58.9490
=43,5813
2646037
9546380
93.9562
73.2788
33,8560
~17.9013
=7.3839

oUTPUT 6
0.0000
~145.0000
=71.0001
33.0001
~99,00600
=143.0001
“«65.0000
~100+0001
~160.0000
~59.0000
33.0001
~29+0001
51+0001
183.0000
15240003
70.0000
52,0001
~54+0002
~7729995
11440004
169,9999
17.0000
~1.9999
106.9997
60,0003
13.0000
18.0000
30,9997
“164 9996
112,0007
15443995

AFTER SELECTING DESIRED OPYION PRESS START

SWITCHES SET ON WERE

TI1ME
0.000
1,000
24000
3.000
4. 000
54000
6.000
7.000
8.000

294405
RUN TERMINATED B

o
oUTPUY 1 QUTPUT &
00000 0400

=174,0000 548986
=76+ 0000 =25.56459
~7.0001 ~3642193
~111.0001 =46.7005
~153.9997 =71.7085
-157.0000 «102.4758
-137.0001 ~140, 7222
=~148.0001 +~191.3815
70.0001 ~24T45366
~40. 9999 +301.6790
~50,0000 «375.1914
116.0000 ~463.6306
256,0000 -553.3020
138, 9999 ~656.7759
00 ~T93.4495
=5.0001 -970.2796
=110.9995 ~1195.,2434
=62.9993  -1480.7031
128,0023  ~1818.5718
128,9986  =2218.9468
=~39,9998 =2715.8164
49,0002  ~3338.1858
21.99% ~4092,929%
15.9999 =5020.5391
4209995 =61 64,8945
100. 9999 =7566.9062
=3,000 -9285.,7305
17,9996 ~11407.5859
15649997 <14006.7617
172.3003 -15216.5391

Y QUIT ELEMENT

OUTPUT &

-29.0001
51.0001

183,0000
152.0003

oUTPUT 9
040000
17366.8516
633010234
16125,6875
97690, 6250
111074,1250
116759.9315
118096.8750
122664,9375
126697.8750
186863.8125
197174.9375
20522841250
338474,3750
4235164375
427801.,5000
43174842500
450870,0000
485543,6250
508213.8125
580438, 6250
604530.0625
$17622,2500
£35275.3750
638661.8125
641006,4375
642500.5000
645553,5000
678265, 5625
682722,4375
T01147,3750

ouTRUT 9
2.0000
20699,7812
92307.1875
102400.1250
119020,4375
133319,2500
140040,5000
145914,5000
148833.56250
210719, 5625
640131.6875
1124475.0000
1928804,0000
4114139,0000
0000

0.0
*
[T

[ EE—

| P

Lo s .

Fiom i mimsinge et i

fanndemmm b ammaind

REBRESRERS

it gt Bt

o 0t 10 g B kBt

0.0
*
==+

[ ————Y

T=w

Imman e ————————

Jomrme———.—o—————————
[ L ——
| L P ————y

| P R N RS-

- e

———

SEEsenise

o Ot e

70,000010551471,0000
52.000114921296.0000
=54.000220795808, 0000
~717.999528711672.,0000
114,000642619920.0000
0000

I

169.99
17

0000

=1.999

106,
60,

13

30.999
“16¢

oy o e 50 - et

112,

154,

AFTER SELECTING DESTRED DPTION PRESS START

SWITCHES SET ON WERE

1
1
1

29.405 172, 300:
RUN TERMINATED BY QUIY ELEMENT

o
QUTPUT 1 OUTPUT &

0.,0600 0.0000
~5.186%
=16.8405
=14.0848
=11.5446
3 =18.6897
~157.0000 ~22.9381
-137.0001 ~26.0302
~148.0001 ~31.,1899
7G. 0001 =29.4025
-40.9999 ~17.6783
=504 0000 =15.3618
116.0000 ~11.4857
256.0000 5.0411
138.9999 21.5164
51,0000 21,8154
=5.0001 17.6089
-110.9995 Beb6428
~62,9993 ~3.4102
126.0023 =1e1667
120.9986 10,6403
~39.9998 13.4804
49,0002 7.2679
21,9994 10,8019
15.9999 1241279
4229995 9.4020
100.9999 10.4651
~3.0005 13.3924
17.9996 15269
156.9997 0.0559

2,0000 10802160000

2,0000 4371103744.0000

2.0000 2857371904.0000

14.8619

QUTPUT &
0.0000
~145.0000
=71.0001
33,0001
-99.0000
=143,0001
=65.0000
=100.0001
«160.0000
=59,0000
33,0001
=29.0001
51.0001
183,0000
152,0003
10,0000
52,0001
=54,0002
=17,9995
114.0004
169.9999
17,0000
-1.9999
106,9997
60.0003

112.0007

11216400000
T01147.3750
1001791,0000

154,3995

AFTER SELECTING DESIRED OPTION PRESS START

ouTPUT 9

+3125
168590.5000
189280.7500
212569.3750
2793086875
321087.9375
333533.3125
337805.5625

653275.2500
659901.3750
669836.0625
T01502.1875
121362.0000
811890.9375
862132.5625
354143,9375
897915.5625
912953.8750
919990.3750
927188.4375

965750.4375

1001791.0000

8.0

+
1=t

L RSy —,

| (R ——y

| IR

SEREsRERER

. 00 Bk 0 g

0 0 1 B e

s Bt 8 gt 24

-0,4142
437039.7500
285636.875p

=0.1000
240000
500000

0.2750
8. 1000
O.0

0,1150
2,1000
5.0000
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SWITCHES SET ON WERE o

TIng
0.000
1.000
2.000
3.000
4,000
5.000

29.40% 172.3003
RUN TERMINATED BY QUIT ELEMENT

BUTPUT 1
0.0000
«174.,0000
=76.0000

~148.0001
7040001
~40.9999
~5040000
116,0000
25640000
138.9999
5140000
=5.0001
~11049995
~62+9993
128,0023
128.9986
~39.9998
49.0002
2149994
15.9999
42,9995
100.999%

QUTPUT &

00000
4542623
~39,7702
97984
~20,3564
-43+5258
=37.9466
=44 .,48856
49,2124
~12.4853
144997
~21.0805
21,0114
55.8797
444 8090
10.7908
18,2055
~28.2632
~24 50891
2645291
46.5701
4.8997

1

12.0316
=7+1710
48,7063
44 o 6534

QUTPUT &

~99,00600
~143.0001
~654+0000
=100.0001
=160.0000
=59.0000
33.0001
~29.0001
51,0001
183.0000
152,0003
70,0000
52.0001
«54.0002
~77.9995
114.0004
169.9999
17.0000
~1+9999
106.9%97
60,0603
13.0000
18,0000
30,9997
~“16+9996
rl2.0007
154,3995

AFTER SELECTING DESIRED OPTION PRESS START

SWITCHES SET ON WERE o

TIME
0/

29,405 17243003
RUN TERMINATED BY QUIT ELEMENT

QUTPUT 1

=76+0000
~7.0001
=111.0001
~153.9997
=157.0000
-137.0001
~148,0001
70.0001
~40+9999
~50,0000
116.0000
256.,0000
138, 9999
510000
=5.0001
~110.9995
=52, 9993
129.0023
128, 9986
-39.,9998
49,0002
21,9994
15,9999

1569997

oUTPUT &
0.0000
—48,7552
-34.1190
12,7022
-23.3258
-36.3724
~42.8667
-39.5017
-43.8015
-2.2624
~0.2508
-2149471
22,4733
59, 1414
39,9629
11,2480
12.0521
-35.0306

QUTPUT &
0.0000
~145.0000
=71.0001

=100,0001
=160.0000
5 000
33.0001
~29.0001
5140001
183,0000
1520003
10,0000
52.6001
«56,0002
“77+9995
114.000%
169.9999
17.0000
~1.9999
10649997

112.0007
154.3995

AFTER SELECTING DESIRED OPTIDON PRESS START

SWITCHES SET ON WERE

TIME
0.000
1.000
2.000
3,000
4,000
5.000

29405 172.3003
RUN TERMINATED BY QUIT ELEMENT

CuTPUT 1
0..0000
«174.0000
=76.0000
~7.0001
~111.0001
~153.9997
~157.0000
~137.0001
~148,000%
70. 0001
~40.9999
~50,0000
116.0000
2560000
138.9999
51.0000
=5,0001
-110,9995
-62+9993
128.0023
12849986
=39.9998
49,0002
21,9994
15,9999
4249995
100.9999
=3.0005
17.9996
156.9997

o

BUTPUT 4
0.0000
=4641095
~41,4292
5.7159
=19.6623
~&T7.4184%
-35,9555
~4348013
=-51.7337
=15.7108
2.5381
-19.1707
22412456
5645473
46,8542
12.6227
17,7874
=-23.6720

DUTPUT &

=99.0000
~143.0001
~6540000
~100.0001
~160.0000
~59.0000
33.0001
=29.0001
51.0001
183.0000
152.0003
70,0000
52.000)
=54.0002
~77.9995
116.0006
169.9999

106.9997
60,0003
13.0000
18,0000
30.9997
=16.9996
112.0007
15443995

AFTER SELECTING DESIRED OPTION PRESS START

outPUY 9

205705.6250
21199741875
21534842500
21703249375
2787456875
363730.5000
383544.6875
393742.8750
401080.1875
411825,8750
421977.6875
471598.1875
505645.8750
505915.2500
529244.1875
541458,3750
55042741250
555521.8750
56625242500
573086, 6250
576947,7500
596595, 7500

ouUTPUT 9
0.0000
9835,0508
48996.0234
58202.1875
469603,5000
86250,3750
108022.6875
123706.5625

2183056.8125
222003.5625
224590.6250
286637.0625
372142.5625
393229,8750
403218.8750
411928,5625
423385.5625

55627144375
5655181875
570587,5625
582322,6125
589453.3750
592640,2500
613114.2500

UTPUT 2
0.0000
10402.6406
485386367
55594.2930
55832,8750
93186.6875
104757.0000
119975.6875

389785.9375
396289.2500
406863,6875
417059.5000
465785,0625

549001.0000
559221.1875
565947,8750
570347.8750
589457.3750

040 AEOHOINEOS
* 1
1+ 1
[mmmem——t 1
[rmmammsind 1
PR 1
e i
[ PN 1
Iemmm e m——————— 1
i 1
1 i
1 1
1 1
1
i 1
I
1
1
1
1
1
1
H
1
1
1
1
0.0 i ]
» 1
1+ 1
Tt 1
O e S 1
Jrmmmmmanant 1
Jemmememaman———) i
Jrrmmenme e e ———t 1
Jemmmmmmmmm— e ——t 1
1
1 1
1 1
1
It 1
1 1
1
1
1
1
i
1
1
0.0 ARBUNRNEEE
+
1+

[ Y

[y
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o ot g ot o 10 O 2
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SWITCHES SET ON MERE
TINE oUTPUT )
0.000 0, 000
1.000 «174.0000
2.000 ~T6.0000
3.000 ~7.0001
4.000 =~111.0001
5.000 ~“153.9997
64000 ~157.0000
T.000 ~137.0001
2.000 ~148.0001
9.000 70.0001
10,000 ~40.9999
11.000 =50,.0000
12.000 11620000
13.000 256.0000
14,000 138.9999
15.000 51.0000
16.000 ~5.0001
17.000 «110.9995
18.000 ~62.9993
19.000 128.0023
20.000 128.598%
21.000 =39.9998
22.000 49,0002
23.000 2)1.9996
24,000 15.9999
254000 42,9995
264000 100.9999
27.000 =3.0005
28,000 17,9996
29.000 155.9997

29.405 17243003
RUN TERMINATED BY QUIT ELEMENT

SUTAUT &

040000
=40.5701
=36.2134
845651
=18.4122
~39.47786
=34.2487
~39.8119
~4%4.7283
«11.7337
L5344
~18.8592
1844341
50,7523
41,1371

QUTPUT 6 ouTPuT 9
0.0000 00000
=145.0000 11127.8%06
~71.0001  53236.4687
33.0001  51439.6719
~99.0000 12636.0625

~143,0001 102336.2500
~65.0000 115663.0000
~100.0001 132875,3125
~160,0000 182671.6000
~59,0000 224614.0000
33.0001 230854.8750
~29,0001 234480.2500
51,0001 236275.0625
183.0000 303240,5000
152.0003 396038.2500
70.0000 417305.5625
52.0001 427912.6250
~54,0002 435402.2500
=77.9995 447551.9375
114.0004 458549,4375
169.9999 512090.0625
3125
250
125

8
106.9997 573370.8
$0.0003 586199.0000
13.0000 595274.5625
18.0000 600862.3750
30,9997 612428.5825
~16+9996 619530,3750
112.0007 624120,8750
154.3995  645437.3125

AFYER SELECTING DESIRED OPTION PRESS START

SUITCHES SET OM WERE [

TIME OUTPUT 1
0,000 0.0000
1.000 -174.0000
2.000 =76.,0000
3.000 =7.0001

~111.0001

-153.9997

~157.0000
-137,0001
~148.0001
70. 0001
~40.9999
-5 00
116.0000
25640000
138.9999

51,8000

=~5.0001

=110, 9995

“62.9993
128.0023
128.9988
=39,9998

29,405 172.3003 48
RUN TERMINATED 8Y QUIT ELEMENT

QUTPUT &

0,0000
~49.6579
~43.0469
11.0008
=22.1326
~47.2632
=hl. 4434
~49.0015
~53,3376
=13.0966
104381
~23.225%
23.5150
60,5561

=30.9064
=25.9048
29,1847

DUTPUT & OoUTPUT 9

0.0000 0,0000
=145.0000 9124.0859
~71.0001  44425.8516
33.0001 51917.1133
=99.0000 62040.5234
~143,0001 86379.3750
=-565,0000 97000.5000

~100.0001 110586.9375

~160.0000 151804.3125
=59.0000 1815
33,0001
«29.0001
51,0001
183,0000
152.0003

~54.0002
-17.9995
114.0004 389916.6875
169.9999 434038.7500
17.0000 468313,6250
<1.9999 468570.8125
106.9997  490460,1875
60.0003 502146.5000
13.0000 511068.5625
18.0000 515704.8125
30,9997 525727.93715
<16.9996 532322.1250
112.0007 535541.0000
1543995 553543.2500

AFTER SELECTING DESIRED OPTION PRESS START

SWITCHES SET ON WERE o

TIME ouTPUT 1
0.000 0.0000
1,000 ~1T4.0000
2,000 ~76. 0000
3.000 ~7.0001

5000 =111.0001
5.000 ~153.9997
6.000 ~157.0000
7.000 ~137.0001
8.000 =14840001

9.000 10,0001
10,000 =40, 9999
11.000 ~50.,0000
12.000 i1l6.0000
13,000 256.0000
14.000
15.000
15.000
17.0
18,000 ~62.9993
19.000 128,0023
20,000 128.9986
21.000 =39.9998
22.000 49,0002
23.000 21,9994
244000 15.9999
25.000 42.9995
264000 100, 9999
27.000 =3.,0005
28.000 17,9996
29.0 156.9997

29.405 172.3003
RUN TERMINATED BY QUIT ELEMENT

QUTPUT 4

0.0000
~47.,0113
=hl.4153

9.8971
=21.1196
«45,3883
~39.3142
~46.0304
=51.2681
-13.1820

OUYPUT & OUTPUT 9
0.0000 0.0000
=145.0000 977643008
~71.0001  46823.3945
33,0001  54323.6758
-99.0000 64T730.8164
~143.0001  90583.7500

=-865.,0000 101801.9375
~100.0001 1162766875
=160.0000 159767.6875

~59,0000 198017.9375

33.0001 204227.4375
~29.0001 20T464.1250
51,0001 209067,6875
183.0000 268946.0625
152.0003 350637.6250
T0.0000 369693.5000
379705.1875

=54,0002 386893.2500

~17.9995 '397080.1250

114.0004 406948.8750

169.9999 455064,1250

6040003 522986.7500
13.0000 531865.1875
18.0000 536787.4375
30,9997 547128.3125
~16.9996 553872,9375
112.0007 557555.5000
154.3995 576459.5000

AFTER SELECTING DESIRED GPTION PRESS START

SERBRIBEES
1
1
1
1
1
1
[mmmeeomnbnnnenrant 1
e ————— 1
i i
1 1
1 1
i 1
1 1
1
]
1
1
1
1
i
sausensees
1
i
1
1
1
1
1
1 1
[ommmrren i e ———————— 1
1 1
1 i
1 1
1 1
1 1
1
1
1
1
1
0.0 SERERRBESE
* 1
134 1
[mwmmmnet 1
Jrememanay 1
Jmwmmranmant 1
Juvommrranvaung 1
Jrresoemem e —————t 1
jomsmmmnna e rua—ant 1
T 1
1 1
k¢ 1
1 1
I 1
i ¥
1
1
1
1
1
1
1
1
1
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SHITCHES SET ON WERE o

TIME QUTPUT 1 OUTPUT 6 OUTPUT 6 OUTPUT 9 G, 0 SNBRRBEERE
0,000 0.0000 0.0000 0.0000 0.0000 + 1
1.000 =174.0000 —43.6279 =145,0000 10353.3516 1 1
2.000 ~76.0000 ~38.2668 ~71.0001 50193.4023 Jemeeceny 1
3.000 =7+0001 9.7036 33.0001 5B278.9805 R I
4,000 ~111.0001 «19+6505 ~59.0000 69112.9375 Jemmcnnacnry 1
5.000 ~153. 5997 ~41.7961 ~143.0001 96936,8750 e et ] ]
6000 ~157.0000 ~36.6734 ~65.0000 109411.4375 T i e -+ 1
7.000 =~137.0001 =43.0402 «100.0001 125428.6250 [mmeemm e e —— -t 1
B8.000 =148,0001 =47.3075 =160.0000 172348.3125 1 1
9.000 70,0001 =~11.8479 =59.0000 212990.8750 1 1

10.000 =40+9999 1.3317 33.0001 219356.4375 1 i

11.000 =56..0000 ~20.4558 =29.0001 222815.5000 I 1

12.000 116.0000 2 5 001 224578.1250 1 I

13.000 256, 0000 183.0000 288030.5625 1 1

14.000 138.9999 152,0003 376122.,4375 ¥

15,000 51.0000 J0.0000 396649.0000

16.000 ~5.,0001 52.0001 407021.3750

17.000 =%10. 9995 ~54.0002 414498.9375 I

18,000 ~62+9993 -77.9995 425776.8125 1

19,000 128.0023 11 1

20.000 128.9988 16949999 1

21.000 ~39.9998 17.0000 1

22.000 49,0002 ~1.9999 1

23,000 2149994 106.9997 1

26,000 15,9999 60,0003 558918.0625 1

25.000 42.9995 13.0000 567968.8125 1

264000 100.9999 18,0000 573227.5625 i

27.000 =3, 0005 30,9997 584325,8750

28.000 17.9996 =16.9996 591245.5625 1

29,000 156.9997 4741215 112.0007 595280.2500 i
1 3.0000 613114,2500 589457.3750 0e1327 0.1000 0.1750 0,2750
1 3.0000 64563743125 553543.2500 5.1662 2.0000 2+1000 441000
1 3.0000 5764595000 615632,3750 ~2.197% ~2.1975 5.0000 248025

42.9465 154.3995 615632.3750 1

294 40! 243003
RUN TERMINATED BY QUIT ELEMENT
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(6)

(7)
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